A-D conversion techniques • Open systems • Inductance meter • 16-Channel running lights • Sound effects generator.
CONTENTS

Special Features
Seepz video units in trouble .. 11.15
Mega Computer offer ... 11.19
International telecom connections 11.18
Gamet for copy ... 11.16
Easycare floppies ... 11.17
AREA AGM ... 11.17

Audio & Hi-fi
PROJECT: Active loudspeaker crossover filters (1) 11.55
PROJECT: Sound effects generator 11.61

Components
Practical filter design—Part 3 11.27

Computers
Open systems .. 11.39
Analogue to digital conversion techniques 11.50

General Interest
PROJECT: The digital model train—Part 7 11.23
PROJECT: Telephone bell .. 11.41
PROJECT: 16-channel running lights 11.47

Radio & Television
PROJECT: Computer controlled teletext system 11.30
PROJECT: VHF channel trap 11.35
PROJECT: RGB-CVBS converter RKF 7000 11.42

Science & Technology
Advanced implant system for VLSI fabrication 11.37

Test & Measurement
PROJECT: RF inductance meter 11.18

Information
New products .. 11.54

Guide lines
Classified Ads .. 11.66
Index of advertisers .. 11.66
RF INDUCTANCE METER

J. Bareford

It is a downright shame not to be able to use many of your inductors simply because their value is not known. First in a new series of budget test equipment for the home constructor, the RF inductance meter leaves coloured bands and unfamiliar codes on high-frequency inductors for what they are, and gives a reliable indication of inductance as well as relative Q (quality) factor on an analogue scale. The usable range extends from about 50 nH to 4 mH.

The present inductance meter is intended for high-frequency inductors, and for this reason it is based on a measuring method rather different from that of the digital inductance meter described in Ref. 1.

The principle adopted here is applying a known frequency to an L-C tuned circuit of which the inductance, L, is unknown, and the capacitance, C, is variable but calibrated. At a certain value of C, the tuned circuit resonates, which is detected by means of a signal rectifier. The value of C required to achieve resonance at the known test frequency provides a measure of the inductance, which can be read off as the relative setting of the variable capacitor. The resultant voltage across the L-C combination provides a measure of the relative loaded Q (quality) factor of the inductor under test: the higher the Q factor, the higher the resonance voltage.

Circuit description

The circuit diagram of Fig. 1 may conveniently be divided into five functional parts.

To begin with, there are two clock oscillators. One, a 7.5 MHz oscillator is set up around quartz crystal X2 and low-power Schottky inverter N2. The other, set up around N1 and X1, oscillates at 24 MHz, or about \(\frac{1}{10} \) times 7.5 MHz. The ratio of \(\frac{7}{10} \) ensures the correct scale factors for the ranges of the instrument.

The second functional part of the circuit is formed by dividers IC1 and IC2. Circuit IC2, a Type 74HCT390 dual decade counter, is driven by the 24 MHz clock signal, and supplies 2.4 MHz (divide-by-10) at output QA1, and 240 kHz (divide-by-100) at output QA2. The second divider, IC3, is a decade counter Type 74HCT4017. It is driven by the 7.5 MHz clock signal, and supplies 750 kHz (divide-by-10) at the CARRY OUT (CO) pin.

Five HCMOS bus drivers and associated double L-C band-pass filters form the third functional block. Impedance matching resistors are fitted between the buffers and the filter inputs. Each band-pass filter is accurately tuned to its input signal frequency to prevent the inductor under test resonating at a harmonic of the test frequency, which would cause too low inductance values to be indicated.

The fourth block is formed by range selector S1 and wideband push-pull amplifier T1-T2. The available ranges and associated multipliers are shown inset in the circuit diagram, and on the front panel of the instrument.

The last functional block consists of the inductor under test, Lx, and the signal rectifier, Di-C4. The high signal levels used for testing inductors allow a fairly simple rectifier to be used in combination with a common 100 \(\mu \)A moving-coil meter, M1. Lx is made to resonate with the aid of tuning capacitor C3 which is shunted by trimmer C4 for calibrating the instrument.

The 5 V regulated power supply around IC1 is entirely conventional. Permissible unregulated input voltages from a mains adapter lie between 9 V and 12 V. Current consumption is about 190 mA, so that a 250 mA mains adapter may be used.

Construction

Anyone with some experience in electronic construction should be able to build the inductance meter without undue problems. This is mainly by virtue of the double-sided printed-circuit board shown in Fig. 2, which helps to obviate awkward problems with stray inductance, shielding and wires.

The PCB has a large copper surface at the component side to ensure proper screening and decoupling (remember that relatively high signal frequencies are involved). Component terminals inserted in a PCB hole without a white overlay spot are soldered directly to the ground surface at the component side.

Start the construction with fitting the resistors, inductors and diodes. Next, fit the capacitors in the filter sections at the centre of the board. Mount the transistors, trimmer C6 (two pitches are allowed, be careful not to overheat the device), and regulator ICs (bolt this direct on to the board).

Do not use sockets for the integrated circuits. Study the orientation of the chips, insert them, and solder the following pins direct to the ground plane at the component side:

IC1: pins 3, 7 and 9,
Fig. 1. Circuit diagram of the inductance meter for high-frequency coils.

IC1: pins 13, 11 and 7;
IC2: pins 12, 2, and 7;
IC3: pins 1, 10 and 19.

Then fit the remainder of the components. Do not attempt to solder the enclosures of the quartz crystals to ground, and be sure to use a PCB-mount rotary switch — panel-mount types with wires result in too much stray inductance.

The tuning capacitor is a 500 pF mica or PTFE foil type as used in inexpensive MW and SW radios. Mount it at the track side of the board, and use short wires to reach the solder islands (the maximum wire length is about 15 mm). If the tuning capacitor has a separate ground terminal, this must be connected to the grounded solder spot also. The photograph of Fig. 5 shows the completed board.

The inductance meter is housed in an ivory white, steel sheet enclosure Type LC850 from Elborne/Tele. The front and rear panels are made of aluminium. Two side brackets with rows of holes are provided to enable circuit boards mounted in the enclosure to be removed without the need of having to disassemble the box completely.

The front-panel foil for this project is not available ready-made, but its true-size lay-out is given in Fig. 3. Copy the drawing and use it to drill and cut the holes in the front panel of the enclosure. Do not spoil the appearance of the instrument by using the screws provided to secure the aluminium front panel. Instead, use double-sided tape or glue.

Use 20 mm long PCB spacers to mount the completed PCB on to a U-shaped aluminium support bracket (see Fig. 4).

Now fit the moving-coil meter into its front panel clearance, and determine how much space you want to leave between the rear of the meter and the components on the PCB. Insert the support bracket with the PCB on it between the side bars, and shift it forward until the holes in the support bracket align with the holes in the side brackets of the enclosure. Depending on the mounting depth of your panel meter, the fifth or sixth hole from the front of the side brackets should be used. Now mount the front panel and pass the spindles of the range switch and the tuning capacitor through the relevant holes. Determine the length of the spindles required to fit the knobs, and remove the front panel. Use a vice to cut the spindles to the required length.

Mount the POWER LED in a holder In-
Fig. 2. Track lay-outs and component mounting plan of the double-sided printed-circuit board for the RF inductance meter.
Resistors:
R1, R11 = 1 kΩ
R2 = 680 Ω
R3 = 470 Ω
R5, R11 = 470 kΩ
R6, R10 = 330 kΩ
R8 = 33 Ω

Capacitors:
All ceramic capacitors are 5 mm pitch
C1 = 33 pF ceramic
C2, C4, C6, C11, C14 = 680 pF ceramic
C3, C5 = 100 pF ceramic
C7 = 47 pF ceramic
C8 = 68 pF ceramic
C9 = 330 pF ceramic
C10 = 68 pF ceramic
C12 = 16 pF ceramic
C13 = 22 pF ceramic
C15, C17 = 1 nF ceramic
C16 = 47 pF ceramic
C18, C20, C22, C24 = 33 nF ceramic
C19 = 160 pF ceramic
C21 = 220 pF ceramic
C23, C25, C27, C29 = 10 nF ceramic
C26 = 470 pF ceramic
C27 = 680 pF ceramic
C28, C30 = 3300 pF ceramic
C29, C31, C33, C35, C37, C38, C40 = 1 nF ceramic
C32 = 600 pF ceramic
C33 = 500 pF mica-film tuning capacitor
C34, C35 = 10 nF
C36 = 4.7 nF, 6 V tantalum
C37 = 1 pF, 63 V radial
C38 = 470 μF, 25 V radial

Semiconductors:
D1–D4 = 1N4148
D5 = 1N4001
T1 = BC140-10
T2 = BC186-10
IC1 = 74L0804 (do not use HC or HCT versions)
IC2 = 74HCT380
IC3 = 74HCT4017
IC4 = 74HCT244
IC5 = 7805

Inductors:
All inductors are axial types
L1, L2 = 1 pH
L3, L4 = 3 nH
L5, L6 = 10 μH
L7, L8 = 35 μH
L9, L10 = 100 μH
L11 = 1 mH

Miscellaneous:
S1 = 5-way, single-pole rotary switch for PCB mounting.
X1 = 24 MHz quartz crystal (3rd overtone; 30 pF parallel resonance).
X2 = 7.5 MHz quartz crystal (fundamental frequency; 30 pF parallel resonance).
M1 = 100 μA moving-coil meter.
Collet knob with pointer (for range switch).
Collet knob with double pointer (for tuning capacitor).
Solid spindle coupling for tuning capacitor.
Mains adaptor chassis socket.

Enclosure: Telet/Elbomec Type LC950.
Telet srl • Via dell’Intagliatore, 4 • 40138 Bologna • Italy.
Telephone: +39 51 534808.
Fax: +39 51 538717.
PCB Type 890119

Fig. 3. The front-panel. If possible, the areas marked ‘A’ should be given a different colour from areas marked ‘B’ to avoid confusion in the use of the two scales.
used on portable cassette recorders and calculators. Be sure to observe correct polarity!

Practical use

Any inductance measurement must start in the range for the highest inductance values (range switch position 5 in the circuit diagram), i.e., using the lowest test frequency. Do not switch up from the low-value ranges to the high-value ranges — this is likely to cause false readings owing to the inductor resonating at a harmonic frequency.

Start in the \(\times 100 \mu H \) range, and turn \(C_0 \) until the meter deflects. Switch to a lower range if the meter does not deflect. Operate \(C_0 \) again until a sharp peak is observed.

The first three ranges, \(\times 100 \mu H, \times 10 \mu H \) and \(\times 1 \mu H \), use scale 'A' (4.0–40) of the tuning control. The next range, \(\times 100 \mu H \), uses scale 'B' (3.3–38). The lowest range, \(\times 1 \mu H \), is only suitable for comparative inductance measurements, since the internal capacitance and inductance of the instrument are significant at 24 MHz. The calibration of the lower half of scale 'B' is, therefore, unlikely to be valid for accurate measurements, but still allows comparative tests to be carried out on batches of inductors. Similarly, the maximum meter indication provides a relative, not an absolute, indication of the Q factor in all ranges.

Calibration

The meter is fairly simple to calibrate. Connect an inductor whose value is accurately known. If you are unable to obtain a reference inductor, use a ready-made choke with a tolerance of 5% (e.g., Circuit's FL4 series). A value near the maximum indication within a range must be chosen, so that the tuning capacitor is set to minimum capacitance. This ensures the largest effect of the parallel capacitance formed by trimmer \(C_0 \). Connect a choke of 220 \(\mu H \) or 390 \(\mu H \) (scale 'A', range \(\times 10 \mu H \)), and set the tuning capacitor as accurately as possible to indication '22' or '40' respectively. Carefully adjust trimmer \(C_0 \) for maximum meter deflection. Connect other, but similarly selected, inductors, and repeat the adjustment for the three highest ranges until an acceptable compromise is reached as regards accuracy of the scale. It should be noted that the resolution and repeatability so achieved depend on the accuracy at which the tuning scale has been reproduced.

Finally, some moving-coil meters have such a low internal resistance as to require an external series resistance to be fitted to prevent the needle hitting the right end of the scale when a high-Q inductor is being tested. The value of the series resistor, if required, must be determined experimentally.

Reference:

Fig. 4. Construction details of the aluminium bracket that holds the PCB.

Fig. 5. Completed PCB before installation in the enclosure. Note that a dual-pointer knob is fitted on the spindle of the tuning capacitor.
The digital model train – Part 7

by T. Wigmore

The seventh part in the series deals with the circuit description of the main unit in the Elektor Electronics Digital Train System. The construction and testing will be the subject of next month’s instalment.

The main unit consists essentially of a single-board processor system based on a Z80 as shown in Fig. 47. This processor was chosen not only for its very low price, but also because the special Z80 peripheral chips (pio – parallel input/output – and ctc – counter timer control) make it possible to use the powerful Z80 interrupt structure without the need of additional logic. Since the train system requires a number of asynchronous processes to be carried out more or less simultaneously, this is a very worthwhile aspect.

Apart from the standard Z80 design, consisting of the processor proper, memories and a CTC for general timing functions, the unit also contains various I/O structures.

Reading of the locomotive controls is carried out by an analogue-to-digital (A-D) converter with 16 multiplexed analogue inputs. The results of the A-D conversions and the position of the function switches associated with the locomotive controls are read via a PIO port. Set locomotive addresses are read on to a separate bus via a diode matrix. This matrix may be considered a primitive 16-byte manual access memory (MAM), which has the advantage that no knowledge of programming is required to set the addresses. The setting may be carried out with the aid of diodes, D3 (dual-in-line) switches or thumbwheel switches.

The keyboards are connected to the Z80 bus via a 20-way connector and the keyboard interface. The 20-way connector indicates that, in contrast to the Marklin system, the keyboards are driven in parallel. Marklin's serial keyboard drive requires a microprocessor for each keyboard. Since our keyboards do not need a microprocessor, the relevant circuits have remained fairly simple. The cost of this is, of course, a 20-way connector between the main unit and the keyboards but, since keyboards are normally located next to the main unit anyway, that is hardly a disadvantage.

The main unit also has a serial output to the booster. The serial signals (binary coded trinary data) are generated by a special function IC. One timer of the CTC is used as the clock for the serial-signal generator, so that the baud rate may be adjusted with the aid of software. This is necessary, because switching instructions for signals and turnouts (points) need to be sent at higher speeds than the locomotive control commands.

Finally, there is a bidirectional serial (semi duplex) RS232 interface, but this does not make it necessary for the train system to be controlled via a computer; the unit is perfectly suitable for stand-alone operation. However, the RS232 interface makes the system considerably more versatile.

Circuit diagram

The 5-V supply at the top left in the circuit diagram of Fig. 48 is a standard design, except for D36. This diode ensures that the current through the keyboard

Fig. 47. Block schematic of the main unit, which is essentially a Z80-controlled single-board computer.
1 kbyte (taken from V via K14) does not load smoothing capacitor C25. This is necessary, because this current may be quite substantial (several amperes) if a large number of keyboards is used. This is also the reason that the D9-D14 are heavy-duty types.

The supply for the RS232 drivers in IC10 is provided by IC15 and IC16. These components are necessary even if the RS232 interface is not used, because two gates in IC10, N2 and N5, are used for driving the booster. The input voltages for IC5 and IC16 (±20 V and 0 V respectively) are derived from the booster circuit.

The serial control data are encoded by IC7. Inputs D1-D4 are driven via electronic switches ES1-ES4. These four bits form the address section of the control data and are defined in three-state logic, that is, they are '1' or '0' or 'undecided'.

The data section, D5-D9, functions with binary logic and is, therefore, connected directly to the output pins of IC7. Output buffers IC7 and IC9 ensure that the serial data remain stable during transmission. As soon as the address part of a data byte is placed into IC23, the start instruction for serial transmission (FE) is given via N6.

The clock for IC27 is derived from the second timer in the CTC, IC12, to enable the speed of the serial transmission via the software. The clock is divided by two in FF3 to obtain a 50% duty factor, which is necessary for the correct operation of IC27.

The clock pulses to IC27 are counted by the CTC. After 200 pulses, a data byte is transmitted twice and an interrupt is generated. The interrupt routine prepares the next data byte to be transmitted and starts the next transmission cycle.

The output signal of IC27, which swings between 0 V and 5 V, is amplified and made symmetric (±12 V) by N8. Since the signal is inverted by this gate, it is inverted again by N2 and then passed to the booster via N1 and K7. Output Q6 of IC17 is used to drive relay K7. When the relay is not energized, the output of the unit, and that of the booster, is high-impedance, so that no voltage is applied to the track.

The oscillator, N11-N12, is followed by binary scaler IC8 whose output QA delivers the 2.45 MHz system clock. This frequency was chosen, because it enables both the baud rate of the RS232 interface and the various frequencies for the serial transmitter to be derived from it. Output QC provides a 614 kHz signal that is used as the clock for the A-D converter.

The circuit around the CPU (central processing unit), IC4, the PIO, IC3, and the CTC, IC12, is entirely standard and will not be discussed here.

The address decoding for the memories is carried out by IC16. This circuit splits the addressable memory locations of up to 64 kbyte into eight pages of 8 kbyte each. Page 0 (0000-1FFH) contains the control program for the system, which is available as an EPROM, coded ES5372 (see the Readers services page towards the back of
Fig. 48. Circuit diagram of the main unit of the Elektor Electronics Digital Train System
this issue. The EROM contains unallocated space that may be used for any future extensions of the program.

The RAM is contained on page 2 (4000H –5FFFH) and this page is also largely unused. The system uses 2 kbyte, a further 2 kbyte is reserved for possible future extensions and 4 kbyte is available for downloading of user programs that are actuated via special RS232 commands. Table 5 shows the memory mapping.

The I/O addresses that are available on outputs A0–A7 of the CPU during read or write instructions are decoded by IC 7. Here again, some space is not used and 32 I/O addresses are reserved for possible future extensions. See also Table 6.

The locomotive addressing is carried out via IC 5 and IC 6. Up to 16 selections may be made. S0–S15. If a selection signal is made active, then the relevant lines L0–L15 (LA=W locomotive address) that are connected to the selection line via a diode will also go high. Lines without a diode are held low (‘0’) by a pull-down resistor (contained in array RA).

When the end-of-conversion signal (EOC at pin 13) becomes active, the converted signal is applied to the PIO. Five bits are used: four for the speed and one for the direction. The remaining two inputs of gate A of the PIO, PA5 and PA6, are used to read the position of the function switches.

Gate B of the PIO is used for the start/stop line (also the booster overload signal line), the interface for the monitors and the RS232 interface. The output lines are buffered.

Gates N9 and N15 ensure the provision of adequate current to the (relatively) capacitive load presented by the monitor bus.

Gates N3 and N11 adapt the logic 0–5 V level to the ±12 V RS232 level. Gate N1 does the opposite for incoming RS232 signals.

Control of the RS232 is entirely via software and will be dealt with in detail in a forthcoming article in this series.

Integral test program

Testing of the board is facilitated by the test routines incorporated in the system program. The most important of these is the service loop. This is actuated when the power is switched on while the co switch is kept depressed. As long as S1 is closed, the service loop will remain active. During sustained testing it is, therefore, advisable to short-circuit the switch.

The service routine places VLF (very low frequency) square wave signals on the various output ports. These signals may be checked with a multimeter. Also, a yellow LED (D35) flashes in a 1 Hz rhythm and the LEDs on the keyboards will be driven sequentially. The service routine is disabled by opening S1.

If the booster was connected (which is not required during service checks), it may be necessary to press stop key 51 briefly to activate the service loop.

A standard multimeter (analogue: K = 20 kΩ/V or digital) and an oscilloscope or frequency meter are required for testing and checking. If an oscilloscope or frequency meter is not available, not all recommended test can be carried out, which results in a somewhat greater uncertainty factor. However, if the construction has been carried out carefully, there is not much risk of anything going wrong, particularly not since the circuit has no calibration points whatsoever.

The locomotive addresses, which are in BCD (binary-coded decimal) format, are read via buffer IC1. The reason that IC 1 is a bidirectional buffer although the locomotive addresses can only be read by the diode matrix is that in future a select-and-display board may be used for the locomotive addressing.

At the relevant locomotive control, the address is set via the RS232 interface and written to the display board via IC 1. This ensures that the display at all times shows to what address a given control is set. The practical implementation of the diode matrix will be described in next month's installment.

At the same time the locomotive address is read, the position of the function controls is read into bistables FF1 and FF5, one of the 16 analogue inputs of the A–D converter is selected and a conversion is started. The analogue input address at A0–A3, is taken to the converter via the address-latch-enable signal at pin 32. The conversion start signal is available at pin 16.
PRACTICAL FILTER DESIGN – PART 9
by H. Baggott

Following last month's discussion of Chebishev filters with a ripple of 0.1 dB in the pass band, this month's article deals with Chebishev networks with a 0.5 dB ripple. These have an even steeper cut-off profile than the 0.1 dB types but, as explained last month, the ringing becomes more pronounced.

As in previous articles, five tables are given that contain all the information for the calculation of Chebishev filters with a 0.5 dB ripple in the pass band. As was the case with Table 11, Table 15 cannot be used for the computation of an even-order section with equal input and output impedances. For π sections, the table is valid for a ratio of 2:1, whereas for T sections the ratio is 1:2. It all depends on which resistance is used as a reference.

The specific properties of the 0.5 dB Chebishev filter are again shown most clearly by the characteristics in Fig. 47, 48 and 49. The ripple is very evident in Fig. 47, although it should be borne in mind that the left-hand part of the scale has been 'stretched'. Things are therefore not as bad as they may seem; it is only when the ripple exceeds 1 dB that operation becomes troublesome.

The cut-off profile is steep: the attenuation of a fourth-order filter at 2f_c is about 33 dB.

It is interesting to note that the number of 'rings' is the same as the order of the filter.

The delay time characteristic in Fig. 48 shows why the Chebishev filter is not suitable for use in phase linear (audio) applications.

The step response in Fig. 49 shows the ringing, which is comparable to that in

<table>
<thead>
<tr>
<th>n</th>
<th>C1</th>
<th>L1</th>
<th>C2</th>
<th>L2</th>
<th>C3</th>
<th>L3</th>
<th>C4</th>
<th>L4</th>
<th>C5</th>
<th>L5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.502</td>
<td>0.7776</td>
<td>3</td>
<td>0.2564</td>
<td>0.8513</td>
<td>4</td>
<td>0.1586</td>
<td>0.8509</td>
<td>5</td>
<td>0.1053</td>
</tr>
<tr>
<td>8</td>
<td>0.07437</td>
<td>0.8941</td>
<td>0.02032</td>
<td>0.8728</td>
<td>0.02775</td>
<td>0.8684</td>
<td>7</td>
<td>0.06522</td>
<td>1.0034</td>
<td>0.01647</td>
</tr>
<tr>
<td>16</td>
<td>0.04297</td>
<td>1.0094</td>
<td>0.01212</td>
<td>0.8687</td>
<td>0.01814</td>
<td>0.8718</td>
<td>0.0214</td>
<td>0.2098</td>
<td>0.03379</td>
<td>1.0136</td>
</tr>
<tr>
<td>32</td>
<td>0.01747</td>
<td>0.1205</td>
<td>0.00731</td>
<td>0.917</td>
<td>0.01242</td>
<td>0.7738</td>
<td>0.01554</td>
<td>0.4672</td>
<td>0.01734</td>
<td>0.161</td>
</tr>
</tbody>
</table>

Table 15. Standardized component values for passive low-pass filters with an input impedance to output impedance ratio of 2:1 for even-order sections and 1:1 for odd-order sections.

<table>
<thead>
<tr>
<th>n</th>
<th>L1</th>
<th>C1</th>
<th>L2</th>
<th>C2</th>
<th>L3</th>
<th>C3</th>
<th>L4</th>
<th>C4</th>
<th>L5</th>
<th>C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.308</td>
<td>0.1581</td>
<td>0.1442</td>
<td>0.241</td>
<td>0.01492</td>
<td>0.1430</td>
<td>0.01492</td>
<td>0.1429</td>
<td>0.1429</td>
<td>0.1429</td>
</tr>
<tr>
<td>4</td>
<td>0.2288</td>
<td>0.3506</td>
<td>0.3421</td>
<td>0.241</td>
<td>0.01492</td>
<td>0.1430</td>
<td>0.01492</td>
<td>0.1429</td>
<td>0.1429</td>
<td>0.1429</td>
</tr>
<tr>
<td>8</td>
<td>0.2564</td>
<td>0.2769</td>
<td>0.3053</td>
<td>0.2409</td>
<td>0.03064</td>
<td>0.24</td>
<td>0.03064</td>
<td>0.24</td>
<td>0.03064</td>
<td>0.24</td>
</tr>
<tr>
<td>16</td>
<td>0.262</td>
<td>0.2923</td>
<td>0.3323</td>
<td>0.2948</td>
<td>0.3002</td>
<td>0.2633</td>
<td>0.3058</td>
<td>0.2898</td>
<td>0.3058</td>
<td>0.2898</td>
</tr>
<tr>
<td>32</td>
<td>0.2531</td>
<td>0.3142</td>
<td>0.3904</td>
<td>0.3026</td>
<td>0.326</td>
<td>0.285</td>
<td>0.3058</td>
<td>0.2898</td>
<td>0.3058</td>
<td>0.2898</td>
</tr>
<tr>
<td>64</td>
<td>0.2528</td>
<td>0.3242</td>
<td>0.3904</td>
<td>0.3026</td>
<td>0.326</td>
<td>0.285</td>
<td>0.3058</td>
<td>0.2898</td>
<td>0.3058</td>
<td>0.2898</td>
</tr>
</tbody>
</table>

Table 16. Standardized component values for passive low-pass sections with negligible source impedance.
Table. 17. Standardized component values for active filters with single feedback path.

A worked example

This time we give only one example, but it has two possible solutions.

Design an active band-pass filter with a -3 dB bandwidth extending from 11.5 kHz to 12.5 kHz. The attenuation at 8 kHz and 18 kHz must be not smaller than 40 dB.

The aim is to keep the circuit as simple as possible. Since no mention was made of the permitted ripple in the pass band, we choose a 0.5 dB Chebyshev section, because this has the best cut-off profile.

First, we calculate the centre frequency, \(f_c \):

\[
f_c = \sqrt{f_1 f_2} = 11,990 \text{ Hz}
\]

Next, we must ascertain the complementary frequencies for the -40 dB points to obtain the steepest cut-off combination.

The lower frequency (8 kHz) is complemented by a frequency of:

\[
f_2 = \frac{11990^2}{8000} = 17,970 \text{ Hz}
\]

The higher frequency (18 kHz) is complemented by a frequency of:

\[
f_1 = \frac{11990^2}{18000} = 7987 \text{ Hz}
\]

The optimum combination is, therefore, 8000 Hz and 17970 Hz, although the differences are so small that we could use either combination. The -40 dB bandwidth is, therefore, 17970 - 8000 = 9970 Hz.

From the characteristics we must determine how this bandwidth may be achieved with the smallest number of sections.
For this, we take the ratio of the bandwidth at -40 dB and that at -3 dB:

\[\frac{9970}{1000} = 9.97. \]

Using this value in Fig. 47, the attenuation of a second-order filter is seen to be about 42 dB, amply meeting the requirement.

In the first instance, an opamp with multiple feedback paths as in Fig. 30 (Part 5) is chosen. Two of these must be cascaded as in Fig. 50 to obtain a second-order filter.

Before the component values can be calculated, the poles must be ascertained from Table 14:

\[\alpha = 0.502; \]
\[\beta = 0.7278. \]

The component values are then calculated with the aid of the formulas given in Part 5. The value of the capacitor is taken as 4.7 nF.

First stage:
\[R_1 = 47.76 \, \text{k\ohm}; \]
\[R_2 = 60.48 \, \text{k\ohm}; \]
\[R_3 = 137.9 \, \text{k\ohm}. \]

Second stage:
\[R_1 = 45.72 \, \text{k\ohm}; \]
\[R_2 = 57.89 \, \text{k\ohm}; \]
\[R_3 = 13.2 \, \text{k\ohm}. \]

In practice, this circuit will function, but the Q of each stage is fairly high. Moreover, the voltage attenuation at the inputs is high enough to cause hum and noise problems unless the highest quality opamps are used.

To obviate these difficulties, a two-stage section based on Fig. 31 (Part 5) as shown in Fig. 51 may be used. This circuit is able to cope with the high Qs.

The component values will have to be recalculated.

The company says that its STR2700 simulator will contribute to still more accurate navigation from satellite signals.

Global Positioning Systems relay on signals from 18–21 special navigational satellites in orbit around the earth, of which the average user can 'see' up to five at any given moment.

Correction to Part 8

The two circuits shown below were omitted from the top of Table 13 in Part 8. Sorry!
COMPUTER-CONTROLLED TELETEXT SYSTEM

A. Clapp

The experimental system described allows the loading into a personal computer of Teletext pages, including the ones that are not normally accessible on a domestic TV set equipped with a Teletext decoder.

Teletext has been incorporated with television throughout Europe since the mid seventies, with the first published specification jointly issued in September 1976 by the BBC, IBA and BREMA. This initial specification permitted the production of domestic TV sets with Teletext. The specification has continued to develop over the years, and additional facilities have become available.

Teletext 'Level-2' provided multi-language text, and a wider range of display attributes that may be non-spacing. There is a wider range of colours and an extended mosaic pictorial set.

'Level-3' introduced dynamically re-defined character sets (DRCS) permitting the display of non-Roman characters, for example Arabic or Chinese. Pictorial graphic characters may also be defined, allowing the composition of improved illustrations for the text compared with earlier levels.

'Level-4' includes full geometric graphics, and requires computing power to generate the display from a sequence of drawing instructions. This permits graphic displays as good as the highest resolution mode of the BBC-B computer. This level offers a colour palette of over 256,000 shades.

'Level-5' is full-definition still pictures, permitting an image of a better quality than achievable from a video camera. It has no losses due to modulating on to a carrier, and no noise added to the picture during transmission.

Also possible within the system at any level is Telesoftware, which is normally seen as a BASIC listing for BBC computers. It can however be machine code for any computer, and encrypted to limit access.

Levels 4 and 5 exist as specifications, although level 4 was transmitted by the IBA as long ago as 1981. There appear to be no TV sets able to handle these levels, and until the editors of CEEFAX and ORACLE use it, the extra cost would not be worth while. Given the TV producers' liking for computer graphics on everything from weather maps to pop videos, hopefully they will come very soon.

Hidden pages

The specification for Teletext is wider than apparent from the familiar remote control handset. Page numbers, for example, are chosen from a key pad with digits 0 to 9. A displayed page has 24 lines. Less known is the fact that the system can accept key numbers in hexadecimal. This means that page numbers such as 10F could be transmitted and never seen by a home TV set. This permits pages to be transmitted to specially equipped receivers only. The system can transmit 32 rows, 8 of which will not be displayed. Three of these are in fact defined: two are used to simplify and speed up related page selection, and the third carries system information including date, time, channel and, when permitted, a program definition field to enable video recorders to be switched automatically to recording by TV programme rather than time.

The key point is that the specifications and capabilities of Teletext are improving constantly, and an embedded design can not be altered to make use of these developments. In the case of hidden pages and rows, it may be that the origins for do not
The Teletext decoder described here can access all definable pages and rows, and make them available to a personal computer (PC) for analysis. The design is split into three units, two of which will be described in detail in this article. These two units are a Teletext decoder and a data and control interface connected to a PC’s RS232 port. The third unit in the proposed system is a TV tuner. The block diagram of the system is shown in Fig. 1.

The decoder

Philips Components (formerly Mullard in the UK) have long produced a family of ICs for Teletext, and most TV sets use them. The present decoder is based on two ICs from this family.

The first is the SAA5231 Video Interface Processor (VIP2), an analogue IC that requires quite a few passive components to be attached to make it work (see Fig. 1). The video processor takes a composite video signal from the TV set, and identifies those lines carrying Teletext information. These are subsequently transferred to the digital Teletext decoder IC SAA5243. The data clock is recovered from the Teletext data stream by the VIP2, and passed to the decoder IC. The 6 MHz clock that runs the system is also generated by the VIP2. The 13.875 MHz is divided by two and phase-locked to the Teletext data to become the data clock. Most of the resistors and capacitors around the VIP2 chip are required to extract and phase-control the Teletext data and clock.

The second IC, the SAA5243 ECCTC (Enhanced Computer-Controlled Teletext Chip), is the really clever one. It takes the stream of serial Teletext data, and analyses it. When a new page header arrives, the information is compared with that of the internal registers. If the new header identifies a requested page, it is stored to an area in the attached RAM. The decoder is capable of doing this for 4 unrelated pages, and holding the latest update of 4 Teletext pages at any one time.

The ECCTC also controls the display function of Teletext. Under the control of internal registers, one page in RAM is converted to a displayed page. The video signal is available as RGB TTL levels with separate sync and blanking. A monochrome signal is also available. The third function of the ECCTC is the one that makes it the choice for this project: the SAA5243 is designed to work on
a computer network, in this case the Philips IC bus. This is basically a two-wire networking system specifically designed for consumer electronics. Each IC bus compatible IC has a unique address built in, and a set of communication protocols to use. The IC monitors the network, and recognises when it is being talked to. In response to certain commands it interacts with the sending device on the bus.

In the present circuit there are only two devices on the IC bus: the decoder and the microprocessor. A connector is provided on the connector board to make the connection to other IC devices possible if experimentation is desired.

The operation of the ECCTC chip and the IC bus is relatively complex. By contrast, the hardware required to implement the decoder chip in an IC environment is remarkably simple. The IC bus has strict protocols, and the timings must be adhered to. The ECCTC has several registers that have to be loaded correctly before anything will happen. At power-up there is little evidence of life from the device, and the display will not even have sync, let alone a default page of Teletext.

It is common for complex devices to be controlled via a piece of software called a device driver. With such a driver, the user has available a set of high-level commands that allow all the functions to be performed without the need of detailed knowledge of that particular function. A full discussion of the operation of the ECCTC and the IC bus is so detailed as to exceed the scope of this article. Software is available to drive the decoder card, and extract from the transmission any byte, row or page of Teletext. Readers wishing to know how this is done in detail are referred to the Application Notes mentioned at the end of this article.

The third essential IC is a 4-to-2 line converter that connects the Teletext decoder to the IC network. The 4 lines go to the external processor that transmits data and clock up and down one pair, and receives data and clock back from the decoder.

A composite video output is available on the decoder board to display monochrome Teletext direct from the decoder. The video output is useful for debugging the system because switching between grabbed pages is instantaneous while transfer via the bus takes about 8 seconds.

The few additional low-cost components needed to implement the video output seem worthwhile even if the facility is rarely used. They can be omitted, however, from the circuit without affecting the rest of the operation.

The composite video is taken from a Rediffusion tuner unit that can be used to drive the decoder card direct. The video output from a VCR should also prove all right. The decoder has a link that alters the input level required to drive the card. In the event of the source not supplying enough signal, a buffer may be required to connect the video source to the decoder card. Use of a tuner unit based on a SAW (surface acoustic wave) filter is well worth considering. Teletext is particularly sensitive to phase distortions, and SAW filters are a considerable improvement over LC IF circuits.

The ECCTC chip has 8 channels, of which 4 are capable of grabbing a page of Teletext as it is received. The operator selects the channel to be current from 0 to 3. The required page for the current channel is selected, and that channel will continuously grab the updates for that page, even when the current channel is changed. The only exception occurs during page transfers to the host computer. The status line, row 25, must be examined to determine when the required page has been received. When a new page is requested, the old one is cleared, including the status line. This is then examined repeatedly until the new page received is signalled. The new page then transferred in ASCII to the host computer, which has to do the graphics code conversion.

The use of the other 4 ECCTC channels is detailed below.

Downloading Teletext Pages on a PC

The function of the controller card is to respond to instructions received on the RS232 link to a PC, and to return Teletext information to a host computer. All the timing and protocol requirements needed to transfer information on the IC bus are handled by an 8051-based controller card (Fig. 3).

Commands from the host computer are in the form of a single letter defining the requirement, followed by a qualifying number. Available commands are listed in Table 1. Page selection, for example, is made by the host PC sending the letter P followed by a 3-figure page number. The controller card then transmits the command to the Teletext decoder card. The controller repeatedly examines the status line in the decoder until the requested page is received. The page is subsequently transferred from decoder memory, via the RS232 interface, to the PC, which allows the page to be stored on disk, or to be printed.

The commands allow the full capabilities of the decoder to be available to the host PC, while keeping traffic on the RS232 interface to a minimum. To allow a wide variety of computers to be used, the bit rate has been set fairly low at 1200 bps. This means that a page of Teletext takes about eight seconds to transfer. Pages are repeated roughly every 20 seconds on Teletext, so a selected page takes about 30 seconds to receive from request.

Channel selection allows 1 of the 8 channels to be selected as currently attached to the interface. The current channel is also the one used to form the on-card

<table>
<thead>
<tr>
<th>Col</th>
<th>0</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>P0</td>
<td>T0</td>
<td>M0</td>
<td>MT</td>
<td>H0</td>
<td>H1</td>
<td>C7</td>
<td>C11</td>
</tr>
<tr>
<td>B1</td>
<td>P1</td>
<td>T1</td>
<td>M1</td>
<td>MT</td>
<td>H1</td>
<td>C8</td>
<td>C12</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>P2</td>
<td>T2</td>
<td>M2</td>
<td>MT</td>
<td>H2</td>
<td>C9</td>
<td>C13</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>P3</td>
<td>T3</td>
<td>C4</td>
<td>MT</td>
<td>H3</td>
<td>C14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>ERR</td>
<td>ERR</td>
<td>ERR</td>
<td>ERR</td>
<td>ERR</td>
<td>ERR</td>
<td>ERR</td>
<td>ERR</td>
</tr>
<tr>
<td>B5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>S</td>
</tr>
<tr>
<td>B6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Commands for the IBM PC control program.

<table>
<thead>
<tr>
<th>Row 25: status line format codes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>PU</td>
</tr>
<tr>
<td>PT</td>
</tr>
<tr>
<td>MAG</td>
</tr>
<tr>
<td>MU</td>
</tr>
<tr>
<td>MT</td>
</tr>
<tr>
<td>HU</td>
</tr>
<tr>
<td>HT</td>
</tr>
<tr>
<td>C4-C14</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>/FND</td>
</tr>
<tr>
<td>ERR</td>
</tr>
</tbody>
</table>
monochrome display, if used. As already discussed, ECCTC channels 0 through 3 are Teletext pages of the form seen on the TV screen. Channels 4 through 7 are extensions of the first 4 pages. Commands such as D (display) and H (hard copy; print) use the currently selected channel as the source of data. Page selection can only be achieved for channels 0 through 3. The controller transfers pages as blocks of 24 rows of 40 characters. The embedded commands of Teletext are removed, and the 7-bit code is extended to 8 bits to allow for direct representation of graphics.

The choice of graphic characters to use may pose a problem in that there is no standard for Teletext graphics. The author used an Okidata-80 as well as an Epson MX-80F/T printer. Both of these have a character set that includes all Teletext shapes. Unfortunately, the codes are different for each printer. The IBM clone used was fitted with a Hercules type monochrome display adapter. This has very few graphic characters, so only an approximation of Teletext shapes is possible. To allow the use of two printers, the control card has the option of two translations of the Teletext page. Each will result in a print-out that is an accurate black-and-white copy on the appropriate printer. The display has only 6 graphic characters that are similar enough to use. Since there are 64 Teletext graphics characters, the host computer translates the graphics character into 1 of the 6 which is most appropriate. The resultant displayed page is in fact better than one would expect. Since the quality of this display is a function of the host computer configuration, users should be able to write their own graphics translation routines to maximize the fidelity of the representation. The commands that transfer
text do so with all colour information removed. If the computer is capable of colour, the hex transfer command must be used to ensure that the decoder supplies unaltered data for translation into a format suitable for the display used. An accurate monochrome display is always available from the decoder card. Pages saved to disk are in the printer format, and can be printed out at any time for an exact copy.

Users who have other printers will need to make modifications to permit a true copy. Provided the printer is capable of producing the Teletext graphics set, one of the approaches will work. If the graphics of the printer are ROM-based, the character codes supplied by the RS232 interface card must be translated into appropriate printer codes. This will be a one-to-one translation carried out with the aid of a look-up table which a number of PC communications programs, such as Procomm, have available. If the printer is a type with a RAM-based character set, such as the Epson FX-80 or compatible, the best approach is to reprogram it to emulate an Epson, MX-80F/T.

Since the purpose of the new decoder is to permit examination of the data without pre-conceptions, and allow non-ASCII data to be read, two other transfer modes are available.

The first of these allows transfers of a specified row in ASCII with graphics modified as with the full-page mode. The other transfers a specified row in hexadecimal format as it appears in memory, allowing the host PC to process a page of unmodified data.

These two options can be demonstrated quickly by examining channel 4: three lines will contain data; one has plain ASCII text, one Hamming-modified numbers relating to the ASCII text, and the third contains plain hexadecimal data containing status information on the transmission, including time, date and channel.

PC Interface card

The RS232 interface and controller card shown in Fig. 3 is based on the 8051 microcontroller from Intel. The 128 bytes of internal RAM are sufficient to hold all information for control and temporarily program data. An external EPROM addressed by a latch Type 74LS273 holds the machine code that forms the control program. The UART (universal asynchronous receiver/transmitter) in the 8051 coupled to Newport Components' single 5 V RS232 interface chip Type NM232CD result in a simple, yet reliable, RS232 link. The NM232CD has an on-board ±15 V converter

Practical use of the system

Having built the decoder and the interface, you are in a position to get more out of Teletext than from a standard television-based system. The ability to save pages to disk and edit them creates the ability to build up a database. All weather charts, for instance, over a certain period could be collected if meteorology is a hobby.

The BBC transmits computer programs via Teletext, and these are available with the present system. Once pages can be transferred to disk, it becomes possible to save an entire magazine. One on disk, access to pages is much faster than waiting for the page to come up in the trans-
UHF CHANNEL TRAP

J. Bareford

Powerful repeaters for cellular radio and paging systems, or a strong local UHF TV transmitter, can wreak havoc with the reception of your favourite TV channel. This is usually caused by excessive field strength and resultant intermodulation in the aerial booster or the UHF input stages of the TV set. Cancel the interference once and for all with this simple two-component notch that covers the entire UHF TV band.

Ghost pictures, moiré effects, poor synchronisation, colour corruption, picture inversion and even complete receiver detuning are but a few of the awkward problems suffered by TV owners having their own roof-mounted aerial installation, but unfortunate enough to live close to a transmitter site with UHF stations on it. Problems may arise almost overnight when you find that a particular TV channel suddenly has a lot of interference on it, or is simply replaced by an moving pattern with accompanying buzz on the sound channel. On investigating the matter, it may be found that a UHF cellular radio repeater has been installed recently on a nearby elevated building. The strong signal in the 600 or 900 MHz band blocks the preamplifier in your aerial booster or TV set, or, more precisely; the d.c. setting of the preamplifier is shifted to the extent that the stage acts as a mixer or even a demodulator or frequency multiplier (varactor effect).

Similar problems may occur if a strong TV signal blocks reception of a relatively weak programme on a nearby channel.

30 decibel down

Receiver overloading may be prevented by suppressing the strong, unwanted component in the input frequency spectrum. The present circuit does this with the aid of a series L-C filter that can be tuned to the interfering frequency. The filter acts as a high-Q notch, offering a suppression of more than 30 dB at the resonance frequency.

As shown in the drawing of Fig. 1, the inductor is a length of 1 mm dia. silver-
plated wire connected to a 5.5 pF PTFE foil trimmer (colour code grey, Philips Components). The stator terminal of the trimmer is bent forward and soldered to the inductor, while two rotor terminals are soldered direct to ground. This L-C combination covers most of the UHF TV frequency range (approx. 470–570 MHz), and gives far better results than, for instance, a quarter-wavelength coax stub.

The trap is housed in a screened enclosure made of sheet metal (tin-plate or brass). Coax sockets enable the trap to be installed in the cable leading to the input of the aerial booster. Do not fit the trap between the output of the booster and the input of the TV set — it has no effect there because the interference is caused in the booster!

One socket on the trap may be replaced by a coax plug to enable the unit to be plugged directly on to the output of the coupling/filter unit, if used.

Alignment is simple: tune to the TV channel you want to watch, and adjust the trimmer until the picture is free from interference. The adjustment is fairly critical due to the high Q factor of the L-C filter. If there is more than one source of interference, each of these must be suppressed with its own trap, tuned to the relevant frequency.

Alternatively, if you want to block out a particular TV channel permanently whose reception is otherwise all right (cable networks), adjust the trap for maximum suppression. The TV channel will vanish into noise as you reach the channel frequency. Remember that each channel to be suppressed needs its own trap, unless one acts on a number of channels simultaneously, which is not likely to occur on a cable TV system.

Extended coverage for BBC TV Europe

BBC TV Europe is a simultaneous relay of the BBC-1 service broadcast in Britain, with BBC 2 programming replacing feature films and purchased material, to give the European viewer an 18-hour per day service of the best of the BBC at the same time it is seen in the UK.

Satellite transmissions of BBC TV Europe began in June 1987, following an agreement between the Danish Telephone Companies and the BBC. The service was extended to Norway later in 1987 and to Sweden in 1988. As of April 1st of this year, BBC TV Europe is transmitted from an east-spot transponder of the Intelsat-VFII at 27.5 degrees.

From its start in 1987, BBC TV Europe has steadily attracted more viewers, and now reaches over a quarter of a million households via the Scandinavian cable networks. The use of the east-spot transponder, however, allows direct-to-home reception even if a dish of 1.2 m or larger is used.

BBC TV Europe, like the BBC in the UK, does not carry advertising. Therefore the signal is scrambled and the cost recovered by making a charge to cable companies or direct to home-viewers. The SAVE decoder required is available through local agents from Sat-Tel.

BBC Enterprises Limited • Woodlands

ELECTRONICS SCENE

- 80 Wood Lane • LONDON W12 0TT. Telephone: (01) 743 5588, Fax: (01) 749 0538.

Intel unveils industry's first EISA chip set

Intel's 82350 EISA bus chip set consists of two system board devices that provide 100% compatibility with the EISA bus. In addition, Intel is supplying a bus master device for add-in cards, and a bus buffer device that integrates system board glue logic. Included in the new chip set are the 82357 Integrated System Peripheral (ISP) and the 82358 EISA bus controller (EBC), which recognizes and works with both the 32-bit 386 and 1486 processors.

Intel also plans to provide the 83252 EBB for those manufacturers seeking higher integration for the system board. The EBB contains buffering logic for any one of three modes, including address, data and parity control, replacing as many as 17 TTL components. Though not strictly required for EISA compatibility, the EBB will help system designers meet critical EISA timing demands.

Intel Corporation (UK) Ltd • SWINDON, Telephone: (0793) 696000.

Eutelsat participates in Olympus communications experiments

Eutelsat, the European Telecommunications Satellite Organization, and operator of four Eutelsat-I telecoms satellites, is an active participant in the definition, application and assessment of the communications experiments to be conducted on the recently launched Olympus experimental communications satellite.

Eutelsat has proposed 22 experiments to the European Space Agency (ESA) to be conducted on Olympus. A total of 17 are for the 20/30 GHz payload, four for the 12/14 GHz specialised payload and one for the DBS payload. These experiments will include teleseminars,news gathering, data distribution to microterminals, SS-TDMA and narrowcasting. The first experiments are expected to start in mid-October.

Eutelsat • Vanessa O'Conner • Tour Montparnasse 33, avenue du Maine • 75755 Paris Cedex 15 • FRANCE. Telephone: +33 (1) 45384747, Fax: +33 (1) 45383700.
Advanced implant system for VLSI fabrication

by Bill Pressdee, BSc, CEng, MIEEE

In the last two decades, integrated circuit technology has invaded most areas of business, consumer products and manufacturing. Its growth has indeed been phenomenal and almost exponential with the element density, nearly quadrupling every two years. This has been the result of several revolutions in the development of semiconductor devices. These have moved on from transistor-transistor logic (TTL), to emitter-coupled logic (ECL), to negative-metal-oxide semiconductors (NMOS), and in the last two years to complementary metal-oxide semiconductors (CMOS), in which very large scale integrated (VLSI) chips of one-quarter or one-half million elements are not uncommon.

A similar story can be told of the growth of memory devices, up to the most recent bipolar types, including dynamic random access memories (DRAMs) of up to 16 Mbit capacity and above. As the circuit density has grown more compact, the semiconductor manufacturing techniques have become increasingly sophisticated to meet the requirements of precision in fabrication and reliability in operation.

The fabrication of a VLSI chip, measuring a few tens of micrometres on a silicon substrate is a complicated affair. The VLSI is a complex three-dimensional device, the strata of which are built up by a series of processes involving several chemical substances and a series of photolithographic masks that define the patterns to be transferred to the wafer as photoreist.

Fabrication process

A pattern is fixed, generally by ultraviolet radiation, the unfixed portion being subsequently etched away to allow deposition on the substrate. Precise alignment of the mask appropriate to each stage of the fabrication is paramount, as is the cleanliness of process operations. Careful attention must be paid to the temperatures of deposition and annealing to minimize the out-diffusion of impurities from their layers.

The predeposition diffusion process is one in which a product lot of wafers - loaded into a slotted quartz wafer carrier and introduced into an open-end high-temperature furnace tube - is subjected to a flow of dopant transported along the tube by a carrier gas. This is often nitrogen mixed with oxygen, which permits the impurity to reach the wafer surface as an oxide.

This process has now largely been replaced by ion implantation. By accelerating a beam of ionized impurity atoms in a vacuum to strike the wafer surface, the ion implantation technique enables a precise quantity of impurities to be introduced into the substrate. The impurities may be inserted selectively in areas where there is an absence of surface masking material. They can be prevented locally from reaching the substrate by photoreist or a thermal oxide layer of sufficient density.

An ion implanter needs to generate a high-current level of the required ion type to reduce processing time. The ions may be produced by any method that endows the atoms with sufficient energy to surmount the ionization threshold, generally by collision between high energy free electrons and atoms of the gas. A radio frequency plasma can be created by an electron field between a hot filament cathode and an anode, and confined by a permanent magnet.

The passage of the atoms through the plasma enables the ions so produced to be accelerated into a beam. This beam is shaped and introduced into the target chamber where it performs a raster scan of the mounted wafer. The beam power and ion dose must be carefully controlled to correspond to the depth of implant required.

Greater flexibility

The precision implanter (PI)-9000 was introduced in September 1985 and brought a new dimension to ion implanters in the context of precision, reliability and throughput. The design of the machine took account of the progress of VLSI towards CMOS devices and also chips containing both CMOS and bipolar devices.

The fabrication of an advanced CMOS device may require as many as 11 implants, four of which would be at high dosage. On the other hand, the VLSI design may require shallow junctions with boron implants of 10 keV, although such thin gate oxides are a potential source of damage caused by charging effects.

These and other considerations pointed to the need in the PI-9000 for flexibility to accommodate rapid changes in dose, energy and implant species. With beam currents of up to 30 mA and a voltage range of 10 to 180 keV, the machine can handle virtually any implant requirement.

At the time of the PI-9000's introduction, the implanters of even modest current capabilities were subjecting wafers to high power and high charge densities, causing damage to photoreist and oxide layers. However, even with three times as high a beam current as other implanters, the 9000 generates less than one-third the pulse power and charge density, while the photoreist integrity is ensured over its full power specification and beyond. The scanning system spreads the power over a large area and incorporates very high scan speeds. The ultimate wafer temperature is...
Further reduced by a water-cooled planar heat sink.

The system uses a Freeman source with an extraction voltage of up to 50 kV, decelerating to 20 kV for analysis, and a multi-gap post accelerator that is very tolerant of high pressure transients. Accurate dose control is provided by monitoring the DC current falling on the beam stop when the wheel is out of the beam.

Control of the scanning system is independent of beam current, making dose and dose measurement exempt from the effects of neutralization. Secondary electrons associated with wafers, and electrons from the electron flood gun, which is turned off during beam monitoring. The Faraday region also includes a beam profiler for measuring beam shape and position that can be used prior to each implant.

Fewer breakages

The PI-9000 was the first implanter to introduce planar wafer holding, in which the centrifugal force of the spinning wheel holds the wafers in contact with the heat sinks. Its other advantages include:

- better cooling;
- greater uniformity;
- reduced contamination and wafer breakage;
- the ability to implant over the whole wafer area.

During photore sist implants, the chamber pressure rises owing to the out-gassing of hydrogen from the photoresist material. One of two cryopumps fitted is used to pump the post-accelerator region, making it very stable electrically even at high out-gassing rates. By careful design of the temperature control system, the wafer temperatures are kept below 40°C.

The system processes wafers up to 150 mm in batches of 25, loaded on to the vertical processing wheel. Automatic loading is via a cassette-to-cassette handling system that allows up to five cassettes containing 25 wafers to be placed in the vacuum load lock. Clean room access to the PI-9000 is limited to the load lock chamber and the light-pen-operated video control screen.

Other measures to ensure a clean wafer environment include: sputtering traps; dedicated resolving apertures to reduce cross-contamination; and wafer paddles to remove major sources of contamination and particles. The system maintenance requirements are low; hardware and software are modular in design; full diagnostics, monitoring prompts and self-calibration routines are provided.

Superior wafer handling

The new PI-9200, introduced just over a year ago, is substantially the same as the PI-9000, but has several new hardware and software features and an upgraded performance as a result of three years of operational experience with the earlier machine. The new model includes features incorporated as upgrade kits for the 9000 to improve system reliability, made possible by careful failure monitoring and analysis.

The handling system has been redesigned to take wafers up to 200 mm, the wheel batch size has been reduced to 17, although throughput exceeds that for 150 mm wafers on the 9000. The implanter has a higher performance source and the load lock chamber has been redesigned to reduce gas flow turbulence and particulates, as have the gas vent and pump-down ports.

Internal parts that analysis has shown to be particulate-generating have been eliminated and the particulate level has been further reduced by a new cleaning routine for the load lock and the wheel chambers.

A new control computer has been introduced and the software response times have been improved considerably, while the data collection capacity has been enhanced. The new Autobeam software enables the process engineer to specify any number of recipes to meet the needs of special devices. Each is identified by a simple code number. All the engineer has to do is to specify the number and load the cassette; the Autobeam then takes control of the fabrication.

The Precision Implanter is designed and produced by Applied Materials • Implant Division • Foundry Lane • HORSHAM RH13 5PY • England • Telephone (0403) 53316.

More Automation for Electronics Manufacturing

Reduced manufacturing times and costs are in prospect for electronics companies as a result of a new computer integrated manufacturing (CIM) software package from Racal-Redac.

Nowadays, most electronics designers use computer-aided engineering (CAE) and computer-aided design (CAD) systems to engineer and lay out their printed-circuit boards (PCBs). The output of such systems, a finished PCB layout, is usually provided via a pen plotter or photoplotter in the form of hard-copy artwork.

However, there are two major areas of inefficiency in using hard-copy artwork to set up a PCB manufacturing process. Firstly, the generation and necessary photographic duplication of the artwork is costly and time consuming. Secondly, the PCB design produced on the CAD system may not meet the constraints on board shape and complexity imposed by the manufacturing process. This will lead to costly reworking of the original design, and possibly to a great deal of wasted effort in trying to set up a manufacturing process for an impossible design.

Racal-Redac's 'Visula CAM (computer-aided manufacturing)' consists of a series of programs that allow PCB designs to be taken directly from its Visula Plus CAE/CAD system (or from non-Redac systems via the standard Gerber transfer format), optimized for the manufacturing process and used to automatically program today's high-technology manufacturing tools such as auto-assembly machines and automatic test equipment.

The most innovative aspect of Visula CAM is its variety of post-processing interfaces. These interfaces allow a PCB design to be post-processed into a data format that can be used to drive the tools used in PCB manufacturing directly.

Electroplating PCBs with Copper

A high-speed acid-copper process that offers excellent deposit distribution for PCBs has been introduced by PMD Chemicals. 'Procur 971' offers a current density of 20-80 A/m² (1.8-7.4 A/m²) to make it possible to plate board types selectively that previously could be plated only at relatively low current densities.

The process is suitable for closely packed surface-mount boards, boards that have large areas of ground plane together with isolated tracks, and boards that have a large variation in plating area from side to side. It will plate down holes with a 6:1 depth-to-diameter ratio and give an even coating on surfaces and holes.

'Procur 970' is a similar solution specifically intended for multilayer boards. It offers the same quality of deposit but improves the depth-to-diameter ratio to 20:1 while still giving nearly even deposit thickness ratios. Its operating current density is 5-25 A/m² (54-270 A/m²).
OPEN SYSTEMS

by Pete Chown

The growth in standards for computing must be one of the most significant developments of the last few years. The term 'Open Systems' has come to refer not just to the original idea of being able to interconnect different makes of computer, but also to a whole range of products mainly centered on Unix and X-Windows. Sun Microsystems' Net is often included, although this is really a proprietary system that has become generally accepted.

At the heart of all the OSI applications lies the standard itself, which is what allows them to interchange information, typically over a thin-wire Ethernet. The standard was one of the first systems to be based on a layered model.

The layered model

A layered model is really a form of structured programming, in that high-level operations are separated from low-level operations. Rather than being simply top-down, however, it is split into a vertical stack, so that the higher levels are cut off from the lower levels at certain points.

An accurate interface is defined between all of them, so that a message is passed down at the transmitting side and up at the receiving side.

The layers used in the OSI standard, with the operations they perform, are:

1 - Physical. This is the actual device driver that transmits the data on to the hardware interface between the computers.

2 - Data link. This handles retransmission of corrupted communications and checks CRCs or parity bits (which allow the receiving computer to check the integrity of the data).

3 - Network. This layer decides on the best route through the selected network for the message to take. The layer could well be on a computer different from that which originated the message: suppose a message is sent on to the packet switch network by the transport layer. It is the responsibility of a different computer to control the route through the network, because individual customers have no control over that.

4 - Transport. The purpose of this layer is to decide what the most cost-effective way to send a message is. It does not have any control over the route that the message takes through the network. It will apply such other considerations as urgency and the availability of resources.

5 - Session. It is the job of this layer to ensure that both devices know when communication starts or comes to an end. It must therefore tell the receiving computer that a session (this may be logging on or it may just be sending a message) is starting and also when it has finished. This is particularly important if there is likely to be a significant delay between blocks of data. In that case, it can not be left to time out, because the delay would be very long. This situation may be encountered if a message is being sent over the packet switch network, where delays can be encountered.

6 - Presentation. This layer puts the data provided into the standard format to be sent. It handles data encryption.

7 - Application. This provides the front end of the system. It controls the actual sending of information down to the lower layers and obtains the message from the application program that asked for it to be sent.

The application of OSI

The major growth area in computing in the last few years has been in the market for workstations. These are cost-effective ways of computing since they avoid the need of large concentrations of computing power, which are expensive. They depend, however, for their effectiveness on good communications. On a conventional system, communications are provided fairly easily because everyone is working on the same machine. Consequently, the workstations have standards that probably are more emphasized than in any other area of computing.

For this reason, OSI has become associated with workstations and the thin-wire Ethernet they often use for data communications. It is in this sector of the computer market that some of the most imaginative uses have been found for the new protocols.

The graphics standard

The purpose of the graphics standard is to relieve large computers of the work involved in producing graphics to present the results of the programs they are running. It also relieves communications links of the load of transmitting thousands of individual pixels. Instead, certain instructions are sent to local workstations over a thin-wire Ethernet, and these workstations then control the production of the actual image. This technique is referred to as remote procedure calling, because graphics procedures can be called by a remote machine. The code trans-
tended may the same whatever the receiving machine.

Once the image has been received by the workstation, another advantage becomes apparent. Some of the things that workstations are very good at are desk top publishing and graphics applications, so the pictures obtained from the remote machine can quickly and easily be incorporated into documents being prepared locally (this also relieves large machines of word processing, which, owing to the overhead in switching between tasks, they are very bad at).

Anyone who has used Aldus Pagemaker or MacDraw will be aware of the way in which shapes can be moved around on the screen, as distinct from a 'painting' program where a shape is merely stored as a collection of pixels on the screen. This is another advantage of the graphics standard, because the graphics sent to you by a remote machine can be manipulated locally: you might decide, for instance, that you wanted your pie-chart twice as large. On a conventional system, this would result in large pixels becoming visible where small ones had doubled in size. With the new system, however, all the co-ordinates and sizes can be doubled, giving rise to an accurate chart at four times the area.

Network filing system

The network filing system was devised by Sun Microsystems while everyone else was trying to reach a consensus. This move, brilliant commercially, but bad for effective standards, gave Sun the lead when it became accepted at least as a de facto standard.

This system allows you to work on one machine and use files distributed around a thin-wire network. What you do is to set up a logical directory on your machine that actually corresponds to a directory on a remote machine. The fact that the directory is not local is invisible to the user once that link has been set up.

A similar, but less powerful, system is used by Microsoft for MS-DOS. This predates the Sun system by quite a long time, but there are several problems: firstly, the machine providing the files has to be tied up as a dedicated file-server; secondly, the remote directories are mapped on to local drives - each remote directory is thus placed at the level of being a different physical device. This limits the number of remote directories to 26, which is probably not too much of a problem, but it makes the system inelegant and confusing.

Distributed document architecture

The ox has been set up to allow a document to contain several different files in such a way that the merging of these files is invisible to someone looking at the document. These files could, of course, be on a remote machine if the system were used in conjunction with NFS. At present, it is available only on DEC machines running X-Windows (a version of X-Windows with extensions). The extensions are there to make it difficult for users to change to other X-Windows systems. This technique has been used by all the major workstation manufacturers.

This technique opens up a whole range of possibilities. For instance, it makes it possible to design documents that update themselves automatically when something changes, say, a graph. A new run of simulation could, therefore, cause the report relating to it to update automatically as well (it can not, however, rewrite the conclusions drawn from the graph!).

The technique is more efficient in terms of storage than conventional documents. Suppose you have a large illustration that has been 'pasted' into a document prepared on a dtp system. This illustration is then stored in the document file and also in its original form to allow it to be changed if necessary. With a distributed document system, the illustration is stored only once, and the document derives its illustration from the same file.

This system also has some disadvantages: it is, for instance, not possible to have one file that contains a document. This makes it more difficult to e-mail it to someone. Then there is a danger of interconnected webs of files growing up, which are hard to manage because it is much more difficult to say whether a file is finished with. Furthermore, it is possible for a file to belong to more than one document.

These drawbacks become more serious if the constituent files are not even on your machine: suppose you have a file that is offered to somebody remotely and this third party incorporates it into a document without taking a copy of it. You might then conclude that the file is finished with and erase it. This problem is more likely to occur if people working on the same project are routinely given access to your files. It makes it much more important for strict control to be exercised over which files can be assumed to be left there and which not.

Documentation standard

Go into any large organization and you will discover the endless problems of moving documents between different word processors. There is, consequently, a proposal between several large computer companies to set up a standard for transferring documents. This standard, however, is still at the proposal stage.

The idea is that there be a uniform way of storing the margin settings, page lengths, inserting headings, and so on. It seems unlikely to catch on, however, because it relates to text-only documents, and not to dtp output files or documents with graphics inserted into them. It seems improbable that anyone will want to accept a system that can not cope with these types of document.

There are two ways of implementing the documentation standard. One is to use a native-mode editor that works directly on files in this format. The other is to use a conversion program written for a particular word processor that converts files to that format, and then another conversion program to convert the files back to the format required for the destination word processor.

Unix and X-Windows

Unix and X-Windows are not really os-based applications, but are very important for the success of osf. They form a standard operating system, based on C, that allows programs written for one workstation to run on another. This is very important, because it permits the workstations to become program development tools: the code is then run on a more suitable destination machine. Also, in the volatile workstation market, it is impossible to be very confident about where any of the smaller operators will be in a few years' time. It helps manufacturers to sell their products if users know that they can change to another manufacturer fairly easily. This is, of course, not the attitude taken by IBM who have traditionally locked standards (even ASCII) because these allow people to buy non-IBM machines. It is, of course, true that what makes sense for smaller manufacturers does not for larger ones like Sun and DEC who try to get their own standards adopted. Increasingly, however, even these large companies are being forced by user pressure to support osf.

Bringing it all together

We have looked at osf and a wide variety of workstation and network-based applications. The large flood of applications depends entirely on osf and Unix, which makes it clear how revolutionary the combination of these two has been.

I will now consider one example of the use of this combination that brings together many of the things discussed in this article.

The example is a financial report of a company that will contain a general text written by the general manager or managing director, graphics produced by the production manager or director outlining the efficiency of a production process and text and graphics produced by the accounts department showing the overall financial situation of the company. Assuming that it is important for the document to be kept up to date, a distributed system is used.
The general manager, or his assistant, would produce his text, which contains references to the files for the graphics and any additional text. It would not be essential, and in practice it would almost certainly not be the case, to use the same word processor that the other texts are prepared on, as long as the documentation standard is used.

All the parts of the document would update themselves automatically, so long as they did not change so radically as to make the author’s conclusions meaningless. One problem with large-scale distribution as encountered here would be the large load on the thin-wire Ethernet.

Let us now consider what would happen to a copy of one of the graphs as it moves through the layered model. Firstly, the message would be passed to the application layer (the message will already be in graphics standard form) on the sending computer, which would fetch the message from memory and send it on.

The presentation layer would encrypt the data if necessary; it would probably not do any protocol conversion because the message is already in a standard form.

The session layer would then (via the lower layers) tell the session layer on the receiving computer that a message is starting (notice how the session layers can be regarded as intercommunicating directly). It would then send the message to the transport layer and tell the receiving computer that the message had been sent. Note that what could be an entire session is only used for one message in this case.

The transport layer would have little to do in this example since only one method of transport is available: the thin-wire Ethernet.

The internet layer would then decide on the most efficient and cost-effective route through the networks if there were more than one connected via a bridge.

Finally, the datalink layer would add CRCs and other checking information and the physical layer would send the message.

On the way to the receiving computer, all the layers would perform the operation in reverse. The first item sent would be the session start information and this would be passed on until it came to the session layer that would note that a message was starting. The rest of the message would then be passed on, and finally the session end information would tell the session layer to end the message.

telephone bell

the phantom caller

To many adults it is surprising how much pleasure that the youngest members of the house can derive from a toy telephone. In their eyes the use of a telephone is akin to being ‘grown-up’. This is a point for debate and the psychology is a little out of our province but we can add to the realism attached to this ‘adult behaviour’ (?) pattern.

Normally the toy telephone just sits, waiting for any one of a vast number of callers (including Santa Claus, the pet dog and even the Queen on occasion) to ring with some vitally important information that, seemingly, only our youngest and dearest can cope with. The problems that arrive at the local terminal to imagination are quite beyond the comprehension of adults but we can help to ensure that these strife-torn folk do ring a little more often.

The circuit here produces a ringing tone similar to the modern telephone. This occurs every few minutes and stops when the hand set is removed from the receiver cradle. Schmitt-trigger gates are used in the construction N1, . . . N4. Gates N3 and N4 constitute the tone generator while N2 creates the ringing tone interval. The frequency of calls is left to gate N1 and with the component values shown this will be about every six or seven minutes. Of course, if this is not frequent enough for your own miniature tycoon, the value of C1 can be reduced to up the pace of business. This is also applicable to calls from grandparents.

Whenever the phone rings it can only be stopped (like any other phone) by lifting the handset. This closes switch S2 (a microswitch in the cradle) and halts both the tone generator and tone interval timer via N1. It also resets the call interval timer of course.

The sitting of the on/off switch S2 really depends on the particular telephone used but anywhere will do providing it does not conflict with the appearance of the real thing.

One final word in the interests of the real world. Have you noticed that the children never seem to get a wrong number . . . a crossed line . . . and they can raise directory enquiries in pure seconds . . . !
This RGB-to-CVBS converter, designed by ELV GmbH, accepts digital as well as analogue RGB signals from computer systems, and supplies a composite output signal suitable for driving a monitor, a PAL-compatible TV set with SCART input, or a video recorder.

Nearly all of today's home computers and personal computers (PCs) are capable of supplying RGB (red-green-blue) output signals for driving a colour monitor. The RFK7000 RGB-to-CVBS (chrominance-video-blanking-synchronisation) converter allows computer-generated colour pictures to be recorded on a VCR, or displayed on a TV set, which normally has a greater screen size than a computer monitor. This brings interesting applications related to 'televised' demonstrations, multi-display networks, etc. within reach of the computer enthusiast with an interest for graphics applications.

Connecting the converter

The RFK7000 has 4 connectors on its rear panel:

BU1: This socket accepts a 3.5 mm jack socket via which the unregulated 12 V d.c. supply voltage is applied to the converter.

BU2: This SCART socket takes the 3 analogue RGB signals at an amplitude of about 1.5 Vpp. Analogue RGB signals allow an almost infinite number of colour combinations to be displayed

BU3: Via this SCART socket, the RFK7000 supplies the CVBS signal to the TV set or video recorder. A potentiometer allows the CVBS output level to be adjusted over a wide range

BU4: A 9-way sub-D connector accepts the digital RGB signals at TTL level supplied by the computer. The 3 signal lines and the associated intensity line give a maximum of 16 colours.

The input of the RFK7000 is connected to a mains adapter with 12 V d.c. output. The SCART output is connected to the CVBS (composite-video) input of the video recorder, monitor or TV set. Either BU2 or BU3 is used to drive the RFK7000: BU2 for analogue, BU3 for digital, RGB sources.

Optimum picture quality is achieved by adjusting the VIDEO LEVEL control on the front panel of the converter.

Circuit description

The circuit diagram of the RFK7000 is fairly complex — see Fig. 1.

Digital RGB input

The digital RGB signals are applied to the converter via 9 pin socket BU4. This input is intended mainly for IBM PCs and compatibles equipped with colour graphics adapter (CGA). A CGA card supplies the 3 RGB signals plus an intensity signal that allows any basic colour to be switched to half intensity. This results in a maximum of 16 different colours. The pinning of the 9-way connector is as follows:

Pin 1: ground
Pin 2: not connected
Pin 3: red
Pin 4: green
Pin 5: blue
Pin 6: intensity
Pin 7: not connected
Pin 8: horizontal sync
Pin 9: vertical sync

The RGB and intensity signals are applied to XOR gate inputs (IC9). Jumper pins 4 and 5 enable the RGB and/or intensity signal to be inverted, so that the entire video signal can be inverted if desired.

The intensity signal is coupled into a matrix network via a CMOS switch. The second brightness level can be adjusted with preset R13.

The 3 RGB signals are taken to the analogue inputs (pin 3, 4 and 5) of PAL encoder IC7 (a Type MC1377) via a resistor network composed of R14-R17 and R18-R20.

At the chip inputs, the RGB signals have an amplitude of about 1 Vpp at maximum intensity.

Each synchronisation signal is first fed to a transistor buffer stage, Ti-T3, and from there to a XOR gate in IC9. The polarity of the synchronisation signals can be set to requirement with the aid of jumpers BR1 and BR6. XOR gate IC9 supplies the composite sync signal at digital level. This negative-going signal is fed to pin 2 of IC7 via voltage divider RA1-R4.

PAL encoder

The Type MC1377 PAL encoder from Motorola forms the nucleus of the circuit, because it performs the bulk of the signal conversion functions. The colour subcarrier frequency is adjustable with trimmer C11, while the position of the colour burst on the rear porch of the CVBS signal is adjusted with R10.

Analogue RGB input

The circuit takes analogue RGB signals from SCART socket BU3. This is intended for computers such as the Atari ST or Commodore Amiga, having an analogue or quasi-analogue RGB output. Since the RGB output level supplied by these computers is usually 1.5 Vpp to 3 Vpp, potential dividers R6-R7-R8 and R16-R17-R18 are required to ensure that the converter inputs are driven with a maximum level of 1 Vpp.

The RFK7000 allows separate as well as composite sync signals to be applied to the SCART input. Separate horizontal syncs at pins 10 and 14 are fed to Ti and T1 via 4.7 kΩ resistors. The function of the transistors is similar to those used for the digital sync signals, as discussed above. A composite sync signal as supplied by, for instance, the Atari ST, is applied via pin 20 of the SCART input. This signal is peculiar because it lacks horizontal synchronisation pulses during the vertical blanking interval. The MC1377, however,
Fig. 1. The heart of the RGB-to-CVBS converter is formed by a PAL encoder Type MC1377 from Motorola.
can not work properly without these pulses. The circuit around IC3 and IC4 converts the composite video signal into a standard composite sync signal that can be handled by the MC1377.

The composite synchronisation signal at pin 20 of the SCART input socket has an amplitude of 2 to 3 Vpp. A clamping circuit composed of C5-R2-R3-R4-D5-C6 is used to derive a direct voltage from the composite sync signal. This direct voltage is given a digital level to control gate IC5a. A subsequent gate, IC5b, inverts this control voltage.

Gate IC3 and surrounding components C4-R1-R1-R2-D1 form an oscillator that is disabled outside the vertical blanking interval by means of D6. This means that the oscillator supplies horizontal synchronisation pulses during the raster blanking interval only. The number of pulses and with it their spacing (32 µs) is adjusted with preset R7. Gate IC3a normally supplies a steady logic high level, but positive-going horizontal sync pulses during the vertical blanking interval.

The length of the raster blanking interval is determined by components D1-C3-R11 and inverter IC3b, whose output level changes from low to high at the end of the vertical synchronisation. This event enables the regenerated horizontal synchronisation pulses from pin 2 of IC4 to be added via IC5c, so that the output of the sync generator, pin 8 of IC5, supplies a normal composite synchronisation signal.

If the input signals for the converter are obtained via SCART socket BU1, the jumpers on Br1 and Br2 must be set in a

Fig. 2. IBM PC CGA socket pinning.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ground</td>
</tr>
<tr>
<td>2</td>
<td>ground</td>
</tr>
<tr>
<td>3</td>
<td>red</td>
</tr>
<tr>
<td>4</td>
<td>green</td>
</tr>
<tr>
<td>5</td>
<td>blank</td>
</tr>
<tr>
<td>6</td>
<td>intensity</td>
</tr>
<tr>
<td>7</td>
<td>H-sync</td>
</tr>
<tr>
<td>8</td>
<td>V-sync</td>
</tr>
</tbody>
</table>

Fig. 3. Atari ST monitor socket pinning.

Parts list

- **Resistors:**
 - R1 = 470Ω
 - R4 = 330Ω
 - R9, R12, R15, R18 = 470Ω
 - R19, R20, R24 = 1kΩ
 - R42, R43 = 1kΩ
 - R51 = 1kΩ
 - R64 = 1kΩ
 - R65, R66, R67, R68 = 2kΩ
 - R69, R70, R71 = 4kΩ
 - R72 = 5kΩ
 - R73 = 10kΩ
 - R74 = 15kΩ
 - R75 = 18kΩ
 - R76 = 33kΩ
 - R77 = 47kΩ
 - R78 = 100kΩ
 - R79 = 100Ω preset H
 - R80 = 220kΩ preset H
 - R81 = 50kΩ preset H

- **Capacitors:**
 - C1 = 0.1µF
 - C2 = 0.1µF
 - C3 = 1µF
 - C4, C5, C6 = 22µF, 10Ω, 16 V
 - C7, C8 = 0.1µF, 16 V
 - C9, C10 = 47µF, 16 V
 - C11, C12 = 22µF, 10Ω
 - C13 = 47kΩ, 16 V
 - C14 = 470µF, 16 V
 - C15 = 470µF, 16 V
 - C16 = 47µF, 16 V

- **Semiconductors:**
 - IC1 = MC1377
 - IC2 = CD4011
 - IC3 = CD4096
 - IC4 = CD4070
 - IC5 = CD4047
 - IC6 = 744588
 - IC7 = 7805
 - IC8 = 7810
 - IC9 = 1N4001
 - IC10 = 1N4148
 - D1 = LED; red, dia. 3 mm
 - T1; T2; T3 = BO548

- **Miscellaneous:**
 - CR1 = quartz crystal 4.433 MHz.
 - V11 = 330Ω capacitor delay line.
 - L1 = 10H, adjustable.
 - S1 = Br1 = 3-way pin header.
 - BU1: = SCART socket for PCB mounting.
 - BU2: = 9-way angled sub-D header for PCB mounting.
 - BU3: = 15.5mm jack socket for PCB mounting.
 - 4 off jumpers.
 - 6 off screw M3x8 mm.
 - 6 off nut M3.
 - Enclosure.
 - PCB Type ELV89256.
Fig. 4. Component mounting plan and top view of the printed-circuit board for the RGB-to-CYBS converter.
manner that ensures low levels at the output of XOR combination ICs (6n and 8n at +12 V).

CGA and 50/60 Hz

The colour graphics adapter (CGA) in IBM PCs and compatibles supplies a vertical scanning frequency of 60 Hz. Most modern TV sets are capable of detecting this and switch automatically from 50 Hz to 60 Hz. Older types, however, may require the vertical synchronisation to be corrected if the picture rolls. In most cases, this adjustment is fairly simple to make by means of the vertical sync control at the rear of the set.

In case the picture is not correctly centred, use MS-DOS command

MODE CO80,R

to shift the entire picture one character to the right.

Output circuit and power supply

The composite output signal is supplied by buffer T2, level control R5 and electrolytic capacitor C9.

The RFK7000 has two on-board voltage regulators, so that it is conveniently powered from a standard mains adapter with 1.2 V.c.c. output at about 300 mA. The unregulated input voltage is applied via 3.5 mm jack socket BU1, and fed to buffer capacitor C1 via D1, which affects reverse polarity protection. Capacitor C2 serves to suppress noise. Regulator IC1 has a diode, D2, connected to its ground terminal to raise the output voltage from 10.0 to about 10.7 V. This provides the supply voltage for the PAL encoder MC1377, which requires a minimum of 10.5 V for correct operation. Capacitor C3 serves to eliminate any risk of oscillation.

LED D1 is powered via R4 and indicates that the RFK7000 is switched on. Finally, the 5 V supply for the digital circuits is formed by regulator IC2 in combination with decoupling capacitors C4 to C9.

Construction

The RFK7000 is relatively simple to build because all parts are accommodated on the single printed-circuit board supplied with the kit. Construction is expected to take about 3 hours.

Start by inserting the lowest profile parts, the 29 wire links (do not solder them as yet). Next, bend all resistor terminals to obtain the right pitch. Insert the resistors in accordance with the Parts List and the component overlay on the PCB. Push the terminals apart after inserting the resistors to ensure that they do not drop from the board as it is turned and pushed firmly on a flat surface. Solder all wire terminals, and cut them off as close as possible to the solder joint.

Next, turn the board and fit the 7 diodes, 8 ICs, capacitors, etc. in the normal manner. Lastly, mount the 4 connectors and the video level potentiometer on to the board. Check your work by inspecting all solder joints.

Remove the nut from the 3.5 mm jack socket, and fit the rear panel of the enclosure on to the rear side of the PCB. The two SCART sockets and the 9-way sub-D socket are each secured with two M5 x 10 mm screws inserted through the socket flanges from the outside of the rear panel. Each screw is secured with two M3 nuts. Mount and tighten the nut on to the jack socket.

The front panel supplied with the kit is also quite simple to mount. Remove the nut from the level control potentiometer, mount the front panel, and secure the nut again at the outside. The potentiometer spindle is cut to about 10 mm. Next, fit the colect knob and secure it on to the spindle.

Insert the PCB with the front and rear panel attached into the guides in the bottom half of the enclosure.

Jumper settings

Most CGAs in IBM PCs and compatibles supply a positive h-sync and v-sync signal. Some cards, however, supply a negative v-sync signal.

The horizontal sync signal is fed to the base of T1 via pin 8 of socket BU1 and R3, and the vertical sync signal to the base of T2 via pin 9 of BU1 and R5. Assuming that the horizontal or the vertical sync signal must be inverted to ensure a negative-going composite sync signal at pin 11, the output of IC4. This may be achieved in two ways:

1. Pin 6 of IC6 is tied to +5 V via Br, and pin 9 of IC6 to ground via Br.
2. Pin 6 of IC6 is tied to ground via Br, and pin 9 of IC6 to +5 V via Br.

Since most CGA cards supply positive-going RGB signals, Br is connected to ground to ensure that the signals are not inverted by gates IC6 through IC8. The same applies to the intensity signal: pin 13 of IC6 is normally connected to ground via Br. The voltage of R5 determines the effect of the intensity bit on the colours, and may be adapted to individual requirements.

The jumpers on the board are fitted to allow the RFK7000 to accept sync polarities from CGA cards other than the standard types around. In case of doubt, consult the manual supplied with your CGA card.

Alignment

The alignment of the RGB-to-CVBS converter concentrates mainly on PAL encoder IC7. Alignment is straightforward, and can be carried out without an oscilloscope.

Apply a digital RGB signal to BU6 (if necessary, refer to the pinning shown in Fig. 2), and connect a monitor with CVBS input to BU6. Adjust C6 and R5 alternately until the colour appears on the monitor.

Alignment with the aid of an oscilloscope is even simpler because the instrument allows R5 to be adjusted beforehand. Connect the scope to the output of the RFK7000, pin 19 of BU5. Adjust R5 until the colour burst starts at 0.5 µs after the horizontal sync pulse.

Next, adjust the cross-colour filter, C7-C8. Use an insulated trimming tool to adjust the core of L1. Watch the picture on the monitor, and minimize the moving cross-colour patterns that occur typically at colour boundaries. This adjustment is also possible with the aid of an oscilloscope: peak the chrominance signal measured at pin 10 of the PAL encoder chip. This completes the adjustment of the RFK7000 for use with CGA-compatible PCs.

No further alignment is required if the separate sync signals are applied to the SCART input socket. If, however, composite sync is applied to pin 20, preset R6 has to be adjusted.

Although the Atari ST supplies separate sync signals to the monitor socket (pinning: see Fig. 3), composite sync is used on the SCART cable provided with some STs.

Preset R6 is used to set the pulse spacing of the horizontal sync signal generated during the vertical blanking interval. The pulse spacing may be measured at pin 6 of IC6, and should be about 32 µs. The actual value is fairly uneritical — the important thing is that the MC1377 receives an even number of horizontal sync pulses during the raster blanking interval. This is required for correct synchronisation of the internal PAL bistable.

Constructors not in possession of an oscilloscope simply adjust R6 until the colour shows up on the screen. Some readjustment of R34, R7 and C25 may be required for optimum results, because these adjustments have a fairly large range and some interaction. In most cases, however, the alignment of the RFK7000 is straightforward by optimising the colour fidelity with the aid of the monitor.

Finally, it should be noted that the graphics card or computer used to drive the converter must be programmed to supply 50 Hz vertical synchronisation pulses if pictures are to be recorded on a VCR. This is not required for most monitors and TV sets, whose vertical scanning rate is adjusted either automatically or manually to synchronize at 60 Hz. The RFK7000 is not suitable for NTSC systems.
16-CHANNEL RUNNING LIGHT

W. Werner

This month we turn our attention to a less serious design. The robots in the popular TV series ‘Battlestar Galactica’, and the super-intelligent car ‘Kitt’ in ‘Knight Rider’ are credited with seeing abilities obtained from an electronic eye. The running lights circuit described here simulates such a scanning eye, and is aimed at our younger readers, the budding ‘Knight-Riders’ and model robot constructors.

The circuit diagram of Fig. 1 shows that the anodes of the 16 LEDs that simulate the scanning eye are commoned and connected to the +12 V supply via R4. We can make any 1 of the 16 LEDs light by connecting its cathode to the negative supply rail, which is the same as ground in the present case. Circuit IC1 is the electronic equivalent of a single-pole 16-way rotary switch because it takes the cathode connections to ground in a sequential manner. Only one LED lights at a time. First, output S0 goes low, then S1, then S2 and so on, to S15. Upon reaching S15, the ‘switch’ is turned back again to S14, S13, and so on, down to S0.

Each LED connected to IC1 can be thought of as having a number between 0 and 15. This number is applied in binary coded decimal (BCD) form to inputs D1-D4 of IC2. This should make the type description of the IC, 4-to-16 decoder, clear: the decoder converts the 4-bit code applied to D1-D4 into the corresponding decimal number, 0 through 15. Since only one output is active (that is, logic low) at a time, the description 1-of-16 decoder may also be used.

With 4 digital selection inputs, 2^4 = 16 channels can be addressed individually. Output channel 0 (IC terminal S0) is activated by binary code 0000, and output channel 15 (IC terminal S15) by binary code 1111. Table 1 lists all intermediate values and shows the ‘walking zero’ in the output line configuration. Control input D1 changes state at the highest rate (0-1-0-1, etc.), and is therefore called the least-significant (LS) address line. Control input D4 changes state at every eighth transitions of D1. In the present 4-bit system, it is therefore the most-significant (MS) address line.

Counter and clock generator

The 1-of-16 decoder/LED driver is addressed by a counter, IC2. This IC contains 4 series-connected bistables. Each of these divides its input frequency by 2, and supplies its output signal at a pin designated Q. Since there are 4 internal bistables, outputs QA through QD can take on 16 different logic configurations.

The clock signal applied to input CLK of IC2 is divided by 2 in the first internal divider, which is associated with output QA. The clock signal divided by 4 appears on output QB, divided by 8 on QC, and divided by 16 on QD. This means that QA...
changes at the highest rate, so that it can be connected to input D1 of the LED decoder, ICs. Similarly, MS output bit QD of the counter changes every 8 transitions of QA, so that it can be used for driving the MS address input of the LED decoder. The operation of the counter is illustrated by the timing diagram of Fig. 2.

Input U/D allows the counter chip to be programmed to count up (0 to 15; U/D=1) and down (15 to 0; U/D=0). The bistable built from NAND gates N2 and N3 ensures that the count direction is reversed automatically when state 0 or 15 is reached.

Pin 8 of gate N3 functions as the SET input of the bistable, and pin 6 of N2 as the RESET input. Pin 10 of N3 forms output Q, and pin 4 of N2 output Q. The logic state of Q is always complementary to that of Q. Output Q goes high when the bistable is set, and Q when the bistable is reset. In the present circuit, only output Q is used. A logic 0 at pin 8 of N3 causes the bistable to be set, and output Q to go high. Output Q is made low again by a logic 0 at pin 6 of N2.

The circuit diagram shows that the bistable is set and reset by the logic low levels supplied by LED decoder outputs S0 and S15 respectively. When S0 goes low (D1 lights), it simultaneously causes the NAND bistable to be set, so that counter control input U/D is made high. As a result, the counter starts to count up from state 0. Similarly, when S15 goes low (LED D15 lights), U/D is pulled low, so that the count direction is reversed.

Inputs A through D of counter Ics are jamming inputs that enable a preset value to be loaded when input PE (preset enable) is made logic high. Since the counter is to start at state 0000, all 4 jamming inputs have been tied to ground. Components C2 and R1 briefly take the PE input high at power-on, causing the counter to load ‘0000’ as the preset value.

The CI (carry in/clock enable) of the counter is made permanently low to enable the counter to work continuously. Counting is halted, and the current output state is frozen if CI is taken high. This option is not required here, however.

Count mode input B/D (binary/decimal) of Ics is connected to +12 V because binary counting is required.

The clock signal for the counter is provided by Schmitt-trigger NAND gate N1 and frequency-determining components C1-R2. Together, these parts form an oscillator.

Construction

The present circuit is probably too com-

![Fig. 1. The circuit is essentially composed of a 1-of-16 decoder/LED driver (IC3), a counter (IC2), and a clock generator (gate N1).](image)

![Fig. 2. Timing diagram illustrating the operation of counter IC2, which is composed of four cascaded bistables.](image)

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>1-of-16 code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D4-D1</td>
<td>S0</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>0111111111</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1011111111</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>1101111111</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>1110111111</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>11111101111</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>11111101111</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>11111101111</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>11111110111</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>11111111011</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>11111111101</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>11111111110</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>11111111110</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>11111111101</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>11111111110</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>11111111111</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>11111111111</td>
</tr>
</tbody>
</table>

![table](image)
plex to build on a Universal Prototyping Board as used for other projects in this series. The lay-out of a suitable printed-circuit board is, therefore, given in Fig. 3.

Refer to the Parts List when selecting the components. First mount the wire links, then the resistors, capacitors and IC sockets. The LEDs are fitted last. The introductory photograph illustrates the use of 16 rectangular LEDs whose terminals have been bent at right angles. Round LEDs are, of course, also suitable, and the constructor is left free to decide on the most realistic appearance of the electronic eye. Use a transparent red bezel in front of the LEDs to improve the visibility.

Although the supply voltage of the running lights is given as 12 V, the circuit also works fine when powered from a 9 V or 5 V source. Some experimenting with the value of R_i and/or C_i may be required, however, to obtain the desired scanning rate at relatively low supply voltages. Also, as a general rule, make R_i smaller with low supply voltages to ensure sufficient LED brightness.

![Fig. 3. Printed-circuit board for the running-lights circuit.](image)

Parts list

Resistors:
- $R_1 = 1 k\Omega$
- $R_2 = 10 k\Omega$
- $R_3 = 1 M\Omega$

Capacitors:
- $C_1 = 10 \mu\text{F}; 16 \text{V}; \text{radial}$
- $C_2, C_3 = 100 \mu\text{F}$

Semiconductors:
- $D_1 = D_16 = \text{LED}; \text{red}; \text{rectangular}$
- $I_1 = 4003$
- $I_2 = 4029$
- $I_3 = 4515$

Miscellaneous:
- PCB 886072

World's first single-chip teletext decoder

Plessey's new Type MV1815 is claimed to be the world's first single-chip teletext decoder. The device, manufactured in the company's advanced 1.4 micron CMOS process, also incorporates a data slicer, dual acquisition circuitry and RGB display logic.

With the MV1815, a complete teletext system can be built with just the addition of a single dynamic random-access memory (DRAM) chip. Depending on the size of the memory, up to 254 pages of text can be stored for intermediate access by the viewer. Most currently marketed systems allow storage of only 4 pages.

The new MV1815 supports several languages on the single chip, and is capable of receiving all packets 0 to 31. All 'Level-1' teletext functions are incorporated on chip, plus many 'Level-2' features. The new Plessey device is claimed to have improved graphics capability and greater programming flexibility over competitive products.

Plessey Semiconductors Ltd - Cheney Manor - Swindon - Wiltshire SN2 2QW. Telephone: (0793) 36251. Fax: (0793) 3625 ext. 2198.
ANALOGUE-TO-DIGITAL CONVERSION TECHNIQUES

by Julian Nolan

The rapid growth in the digital sector of the electronics market has given rise to continued demands for more and more increases in the resolution and conversion speed of digital-to-analogue and analogue-to-digital converters. In spite of the industry meeting these demands, the selling price of all types of device has continued to fall. This is particularly true for medium speed/resolution flash devices: an 8-bit, 30 MHz type, for instance, is now available in quantities for well under £20. Advances in the digital-to-analogue converter field have been typified by higher specifications rather than lower prices.

Three main analogue-to-digital (A-D) conversion techniques are in common use: successive approximation, flash and integrating conversion.

Successive approximation has the advantage that for an n-bit converter only n number of stages are necessary in the successive approximation register (SAR), which makes this technique ideal for applications that require high resolution or low cost or both. The technique is illustrated in Fig. 1.

Initially, all output bits of the SAR are set to zero and then each bit, starting with the most significant, is set provisionally to one. If the output of the converter does not exceed the input signal voltage, the bit is left at one, otherwise it is reset to zero. From this, it is clear that an n-bit converter will require only n such conversion steps.

This makes this type of converter relatively fast in comparison with those that use other techniques like single- or dual-slope integration.

Should the input voltage be altered during the conversion process, the resulting error will be no larger than the change during that time. Noise spikes, however, can cause totally erroneous output and must be avoided at all costs.

In general, it is advisable to use a sample-and-hold device in conjunction with this type of converter.

Typical conversion times range from 1 μs to 50 μs, while accuracies of 8-16 bits are available.

Flash conversion requires 2^n-1 comparators, thus limiting the resolution that can be achieved with this technique. Current IC fabrication technology permits up to 12 bits.

Two typical flash devices are Analog Devices' AD770 (8 bits at 200 msp/s) and TDC1020 (10 bits at 20 msp/s).

The technology relies more on 'force in numbers' than subtle design techniques at component level. As shown in Fig. 2, a reference voltage is applied to a resistive divider, whose equally spaced outputs are applied to n-1 voltage comparators. The Gray-code output from the comparators is encoded by the priority encoder to form a usable binary output. Typical conversion rates vary from 10 msp/s to 500 msp/s, while resolutions of up to 12 bits are currently available.

Equations above 16 bits are generally the domain of integrating converters. These offer good linearity and resolution while maintaining a reasonable cost/performance ratio. Typical applications include digital voltmeters, data acquisition systems, weighing and medical systems where the slow conversion rate inherent in these converters is not significant. An example of integrating conversion, dual slope, is shown in Fig. 3.

Initially, switch S1 is closed by the control logic. Switch S4 is then opened and the input voltage integrated for n clock periods, where n is usually the maximum count of the counter. At the end of this time, the integrator voltage, V_o, is

\[V_o = -V_ref \frac{V_o}{RC} \] [1]

where Tc is the clock period.

During this period, the polarity of the
Other techniques of integrating conversion are available, such as single-slope integration and charge balancing. These methods are relatively slow, however, and their use is restricted to applications that can support their relatively high conversion times.

As is seen, none of the three methods discussed provides both a high resolution and a high conversion speed. Where these are required in combination, say, 16 bits at 2 μs, use is made of subranging techniques, which are normally based on a single high-speed flash A-D converter as shown in Fig. 4.

In practice, these types of device are implemented in hybrid form. Some suffer from a reduced signal-to-quantization noise ratio at relatively high input frequencies, although these are not uncommon in A-D converters.

Initially, the input is sampled by the track and hold circuit. Subsequently, the most significant portion of the signal is converted by feeding the output word into a fast, highly accurate D-A converter, whose output is subtracted from the input. The resulting residue is converted to digital form at high speed and combined with the results of the earlier conversion to form the output word. Owing to the very high performance this technique demands from the adder and DAC, it is usual to incorporate some sort of error correction: a commonly encountered type is digitally corrected subranging (DCS). In this, the two bytes are combined in a manner that corrects the error of the LSB of the most significant byte. With the use of, for instance, an 8 and 5 bit conversion, an accurate, high-speed 12-bit converter may be configured, although it should be noted that the resolution of the D-A converter must be greater than the resolution required to maintain conversion accuracy.

Future developments

Digital error correction, using a variety of techniques, from integrating to subranging, is now being introduced into a wide range of devices. This trend is likely to continue and, with the ever decreasing cost of data conversion products, will become increasingly relevant to the low-cost end of the market.

As regards conversion techniques, the serial converter or cascaded encoder as shown in Fig. 5 may well make a comeback. First used in the 1960s as a method of A-D conversion, the serial converter is based on a number of comparators, each taking the residue of the previous stage and comparing it to a reference voltage. If the input is higher than the reference, a 1 is produced at the output, and the residue of the original input signal is subtracted.
from the reference and passed on to the next stage. If the input does not exceed the reference, the signal is passed to the next stage unaltered. It is usual to incorporate a ×2 amplifier to enable the use of a single reference voltage and restrict problems with noise.

In practice, this system has provided difficult to implement owing to errors introduced by the comparators and amplifiers, noise and also poor transfer characteristics in high-speed systems. With the advent of high-performance analogue components, however, some manufacturers are reconsidering this technique, since it offers a unique blend of speed, resolution, and low component count — at least in theory.

Design considerations

The effective resolution at a specified input frequency is usually not quoted in the manufacturers' data sheets and can often be well below the stated optimum. A graph of the SNR/efficacy number of bits vs the input frequency of an 8-bit, 100 MHz sampling A-D converter with a bandwidth of 40 MHz from a well-known manufacturer is shown in Fig. 6.

It is seen that at an input of 40 MHz and a sampling rate of 102.4 MHz, the effective resolution is about 6 bits. That means that only 64 possible output states are provided instead of the 256 that would have been available if the full 8-bit resolution had been maintained.

For applications that require a specified resolution to be maintained over the greater part of the input frequency, it is well worth considering, in situations that are not cost critical, over-specifying the AD converter to meet the requirement.

Although problems are evident in AD converter applications below 12 bits, most occur with accuracies of 12 bits or more, or with high-speed systems, where the problems are accentuated at higher resolutions.

Fig. 6

If successive approximation is chosen for the A-D conversion, a sample and hold stage is essential and this may be a source of trouble in itself. Increasingly, however, some manufacturers, such as Datel in their 12-bit, 500 kHz A/Ds-111, are incorporating a S&H in the A-D converter package. However, there may be advantages, such as a reduction in cost or an improved specification, in using a separate S&H stage.

Three main building blocks are contained in a S&H stage: a capacitor, an analogue switch and a buffer amplifier. Some require an external hold capacitor, which must be chosen with great care as regards its dielectric absorption properties. Teflon or polystyrene capacitors, whose dielectric absorption is fairly small, are well suited to this purpose.

If the sampling system is used as the front end in an A/D system, particular attention should be paid to the aperture uncertainty and aperture time. The time should be chosen so that at the highest frequency the component does not change by more than one bit in the allotted time. It should also be noted that the S&H will always add errors to the A-D converter owing to effects such as non-linearity of the S&H offset.

The use of a single package containing the A-D converter and the S&H has the advantages that some of the problems mentioned are minimized and noise may be less of a problem, especially in high-resolution systems.

Apart from the Datel device already mentioned, some other single-package units are the Sipex HS9474 and Analog Devices AD1332 (which includes an anti-
Whatever technique is used, the analogue input section is vital to the operation of the converter, and usually includes one or more references in addition to conversion technique specific components like comparators and DA converters.

In ratiometric conversion, the reference is usually external and variable. In general, an on-chip reference usually helps to minimize noise, but in a number of cases advantages may be obtained from an external reference.

It is worth noting that the current-switching action of the DA converter, at the typically fast clock rates used in successive approximation converters, may disturb the output of the analogue signal source, especially if it is a high-precision opamp with a low slew rate. In that case, buffering will be necessary.

Design techniques

Whereas digital circuits may have noise margins of a few hundred millivolts, there is no room whatsoever for noise in analogue circuits. For instance, a 12-bit resolution A-D converter with a full-scale range of 3 V has a 0.5 LSB corresponding to 0.61 mV.

Power supplies are among the major sources of noise: the output of switched-mode types may have a noise level of more than 100 mV. Although the ability of an A-D converter to suppress DC supply changes, such as long-term drift (expressed as the power supply rejection ratio – PSRR), is usually good, HF noise is normally not suppressed to any great extent. Wherever possible, the supply voltages for the analogue section should be provided by a linear supply and bypassed direct at the A-D converter. A multi-layer capacitor in parallel with a tantalum capacitor provides a suitable bypass.

To avoid ground loops, it is advantageous to have a 'star point' as close to the AD converter as possible – see Fig. 7. All ground lines should be of low impedance, necessitating wide ground tracks on the PCB or, preferably, particularly if double-sided or multi-layer boards are used, a separate ground plane underneath the AD converter package. In some cases, shielding the converter package from the top may be necessary.

Unless the analogue signal is free of noise, there is little point in taking the protective measures mentioned. To reduce the noise, suitable filters and shielded cables should be used.

Applications

Some of the factors worth considering when choosing an A-D converter for a particular application are:
The applications of A-D converters are numerous and have increased at almost the same rate as their performance. Common applications include, among others, data acquisition, measurement systems, analytical and medical systems, and filter control. A typical application: an A-D converter-to-microprocessor interface, here between a PMI ADC-9012 and a 6502, is shown in Fig. 8. The circuit is fairly straightforward, except that the two 16-bit counters are connected to data bus DB2 and DB3. The ADC-9012, a 10-bit 6 μs converter, makes special provision for this. A suitable interrupt service routine flow diagram is shown in Fig. 9.

Peak detection is one field of applications not usually associated with A-D converters, but it has become feasible with Ferranti’s 8-bit converter Type ZN425E, which has an 8-bit counter on board.

The circuit diagram of a basic implementation of this is shown in Fig. 10 — note that only a small number of external components is required. The comparator enables pulses from the trigger circuit to be clocked by the internal counter and this produces a ramp output until it attains the level of the analogue input. Although rather inaccurate in this particular configuration, the circuit can be readily modified by the use of higher resolution A-D converters.

The AD7820 is a 1.36 μs, 8-bit microprocessor compatible A-D converter that has the advantage of not requiring user trims. The circuit shown in Fig. 11 enables a 9-bit resolution to be obtained by the use of two of these devices: full microprocessor interfacing is provided. Usually, this type of circuit is of limited application, because of its significantly increased chip count and cost if increases in resolution of more than a few bits are required. Nevertheless, this type of configuration is still worth considering in applications where either the cost or availability of a more conventional single-package solution would prove prohibitive.

References
Data Converters and Reference ICs — Ferranti Semiconductors, 1986.

Towards universal skyrone
INMARSAT, the International Maritime Satellite Organization, has joined forces with the International Civil Aviation Organization (ICAO) to plan and provide airborne satellite communications for both airline crew and their passengers.

INMARSAT, a global satellite operator with investors from 56 countries, provides mobile communications world-wide. Almost 9,000 ships and land transportable units currently use the the INMARSAT Standard-A satellite communications system for direct-dial telephone, telex, facsimile and data communications. INMARSAT has offered a similar range of services for aircraft after the first commercial satellite phone call from an aircraft last February.

ICAO is the international regulatory body for civil aviation matters.

The new agreement confirms the capability of INMARSAT to offer mobile satellite communications services in support of air traffic services, airline operations and administration, and passenger communications. It also recognizes ICAO’s exclusive competence to establish international standards and recommended practices in aeronautical communications.

New computer speeds up overseas mail
A new computer system, the Tatom (Tracking and Tracing of Overseas Mail), has been taken into use by the British Post Office.

Tatom gives information about flight schedules and cargo space, matches the demand with available space, determines the fastest routes, and tracks every mail-bag with a bar code label.

Since this is the way all major European countries want to go, the Post Office expects that eventually there will be a total link-up of all the computers of all the post offices. Already, links are underway between the world’s major post offices to use the system to provide full control of mail movements world-wide.

Old recordings as good as new
The bumps, scratches and hiss on early recordings can now be eradicated entirely by a new process developed by musicians and computer experts at Cambridge Sound Restoration.

Cedar (Computerized Enhanced Digital Audio Restoration) can be applied to any material used for recordings, such as wax, vinyl or film, by digitizing the original sound, removing the extraneous noise and giving the listener the exact unmodified performance.

Cedar's first success was with a 1953 performance of Gustav Holst's Planet Suite by the London Philharmonic Orchestra conducted by Sir Adrian Boult. The recording was marred by hisses, cracks and thumps and something like a potato fryer sizzling away in the background. The restored disc is clear and noise-free, sounding as pristine as when it was first made.

All other known noise-eradicating processes use some kind of filtering that automatically affects the sound signal as well as the offending hiss and scratches, but Cedar gives the true performance.

Cedar was invented by Cambridge Sound Restoration (CSR) and is closely tied to the British Library’s National Sound Archive.

At the request of the National Sound Archive, Dr Peter Raynor, whose research work at Cambridge University is the basis of Cedar, used a computer to distinguish between signal and noise on a recording. He then developed a set of algorithms to separate the noise without affecting the signal. Where the signal itself was flawed, he perfected an interpolation algorithm. This enables the computer to analyse the signal on either side of the flaw and calculate the most likely waveform to fill the gap. The result is that even records that have been broken can be glued together and treated by the process, providing the break is clean.

Because each piece of music or speech recording is different, a diverse set of problems is presented each time, which means that Cedar is being refined constantly. The most striking advance since the company’s formation last February is the speed of the process. Initially, it took about 24 hours to process a few minutes of recording. Now it takes only slightly longer than the recording itself.

There are enough old recordings to keep CSR busy for a long time. The National Archive alone has more than one million items, while the BBC and record companies have virtually every recording since the gramophone was invented in 1877.
active loudspeaker-crossover filters (1)

Few things can so hold the attention of the serious audiophile as do loudspeakers. This applies with particular strength to those whose fingers always have the experimenter's itch - so that they cannot or will not without reserve accept somebody else's idea of a loudspeaker system. This can lead to the expenditure of considerable sums, if only on wooden panels, and it will sometimes also lead to frayed tempers at home...

One of the ways of sinking cash into an existing system is to replace the 'passive' separating ('crossover') filters by 'active' types. This of course involves the provision of a separate power amplifier for every driver in the system.

This article on Active Crossover Filters (ACF's) will describe a universal filter circuit, capable of producing a vast number of filter characteristics.

High-quality loudspeaker systems are invariably designed on the basis of 'divide and rule' principles. The incoming audio spectrum is split up into two, three, or even four subspectra, each of which is then passed to a loudspeaker specially designed for that particular frequency range. The crossover from one loudspeaker to the next higher in frequency range is accomplished by a complementary filter-pair whose roll-off response-flanks 'cross over' each other at a point somewhat below the 'full power' level. The filter-pairs are therefore called 'crossover filters'.

A loudspeaker system that uses such filters is usually called a 'multiway' system.

When the filter sections are inserted between the single power amplifier and the individual 'drivers' (i.e. loudspeakers proper), the system is said to have a passive filter. Figure 1 illustrates a typical three-way system. The low-to-midrange crossover frequency is f_1 and the midrange-to-high crossover occurs at f_2. The representative frequency of the animal kingdom shown here has their typical calls 'borrowed' to provide an identification of the drivers into the categories low-range (woofer), midrange (squawk) and high-range (tweeter).

The basic idea behind the multiway approach is the fact that an optimally designed 'woofer' is - for basic design reasons - a sub-optimal loudspeaker at higher frequencies. This does not mean that a 'new' design method may not someday produce a first-class full-range driver; it simply hasn't been done yet. The problems to be faced are quite formidable - and a computer is only useful to quickly do the sums that a human being already knows how to do.

A multiway system is necessarily more complicated and more expensive to produce than a single-driver system. That is a clear disadvantage. There is however a second objection to the multiway approach - a more fundamental objection; how does one tackle the fact that frequencies near the crossover point are radiated by both drivers? The two radiating diaphragms cannot be at the same position in space - although they often can be spaced quite closely - so that 'interferences' between the two radiating waves can cause irregularities in the response characteristics and in the radiation pattern of the system.

'Dividing' is one thing, 'ruling' is quite another...

Most of the interference effects can be avoided when the two frequency-adjacent drivers are mounted concentrically - one within the other. This is usually no problem, since an optimal tweeter can be made smaller than a woofer. The past has known designs - and many of them still very popular - in which a tweeter of one kind or another has been built into a woofer (or, more accurately, a woofer-midrange) cone loudspeaker. The crossover can be mechanical in nature (as in the 'good old' G6101M), or a more advanced twin-driver-plus-eletrical crossover system can be employed (as in the famous Tannoy Monitor Gold and certain Goodmans and Isophon units).

Passive or active?

Having decided that a good loudspeaker system, at the present state of the art, is going to need at least one crossover filter, we have to decide whether this filter should be a 'passive' or 'active' design. (For our purposes, an 'active' filter is one in which the inductors have been eliminated by the application of capacitors and amplifiers.)

Figure 1 illustrates a typical passive-filter three-way system. The passive filter is built up with inductors, capacitors and any matching networks that may be necessary (e.g. to reduce the driver to a too-sensitive tweeter).

Figure 1b illustrates the bare bones of a three-way passive filter. One difficulty is immediately apparent. The woofer section requires an inductor in series with the driver voice-coil. The considerable inductance involved means that there will be power loss in the complex system of series connected filter coil, or else that there will be distortion due to the non-linearity of a low-loss coil that has a ferromagnetic core. Neither of these effects should however be viewed out of proportion: the often-cited effect of the series-resistance on the woofer's electrical damping is completely swamped by the effect that the voice-coil resistance has - and one can design iron-core inductors with a level of distortion that is insignificant compared to that of the actual driver.
Another source of difficulties is more awkward to eliminate. Normal electrical wave-filters assume a pure-resistance load-termination. When you connect a loudspeaker to such a filter the final characteristic may not be quite what you intended — it may even be wildly off. The trick of connecting an RC network across the speaker terminals to compensate the high-frequency rise in impedance (due to the coil's inductance) certainly works and should be better known; but the fun really begins when the speaker impedance contains significant components 'reflected' from the mechanical 'circuit'. That usually happens in the neighbourhood of the driver's fundamental resonance; it can be a very expensive nuisance in the case of midrange and tweeter units that have a resonance (as is usual) at or just below their high-pass crossover frequency.

Now, a well-designed commercial 'passive filter system' will invariably work very well — but that success is due to a combination of design experience and available facilities beyond the reach of the 'do it yourself' audiophile.

Although it would be possible to say a great deal more about passive filter arrangements and matching networks, this article is supposed to be about active arrangements. Having implied, above, that the amateur is better off tackling his problem with an active system, we must now try to explain how.

Active Crossover Filters

Figure 1a shows the block diagram of a three-way active ('electronic') crossover filter. It is immediately clear that each of the loudspeakers requires its own power amplifier. This need not be so expensive as one might think, since the total power required (and hence the amount of mains transformer, reservoir capacitor and heat sink) is not increased by subdividing the amplifier. As a rule, the woofer will need the most powerful amplifier (perhaps 50...70% of the total), with the midrange unit handling perhaps two-thirds of the remainder. Much will obviously depend on the individual drivers used. When drivers are obtainable with varying rated impedances, the power distribution over the output stages can be achieved by using a single supply voltage together with a low-impedance woofer (say 4 ohm), a mid-range unit of higher

Figure 1a. Block diagram of a three-way system with passive crossover filter.

Figure 1b. As an example: the KEF type DN 12 SP 1004 three-way passive filter.

Figure 1c. Block diagram of an active-filter three-way system.

Figure 1d. An active-filter two-way system.
impedance (say 8 ohm) and a tweeter of still higher impedance (15 ohm).

A major advantage of the active-filter approach is the ease with which sensitivity differences between the drivers can be eliminated. In figure 1c this is accomplished by adjustment of the presets $P1$, $P2$ and $P3$. Figure 1d gives a simpler two-way circuit, suitable for use with smaller diameter woofers that are also well-behaved throughout the mid-frequency range. Still another possibility is shown in figure 1e, a 'hybrid' three-way system. In this case the woofer to midrange crossover is done with an active filter and two power amplifiers; the frequency ranges for the midrange and tweeter drivers are however separated by a passive filter set.

What are the other advantages of the active filter approach?

- the design is far more flexible; a change of crossover frequency or drive level can be quickly and conveniently achieved by changing one or two R's and C's or adjusting a preset potentiometer.
- there is no complication in the filter design caused by the awkward termination (the loudspeaker impedance).
- it is relatively simple to produce complicated filter characteristics whenever this is thought desirable or necessary.
- since the power amplifiers will usually be installed in the loudspeaker cabinet, the individual drivers can be protected from overload by suitable choice of the power rating of the amplifier concerned.

The filter circuits

Figure 1f shows a set of filter characteristics, as would be required for a three-way system. The frequencies f_1 and f_2 are the -3 dB points, at which the response curve of a complementary filter-pair actually 'cross over' each other. Half of the power at a crossover frequency is transmitted through each filter of the pair. For a three-way system f_1 will frequently lie between 300 and 600 Hz (sometimes as low as 100 Hz, or as high as 800 Hz). The other crossover will usually be found between 2 kHz and 8 kHz - typically near to 5 kHz. The single crossover in a two-way system is usually between 1 kHz and 3 kHz (typically around 2 kHz).

The slope of the various filters will into their respective 'stop-bands' is a multiple of 6 dB/octave (i.e. 20 dB/decade). The figure 1f curves are drawn for 12 dB/octave (1,4,5,8) and for 18 dB/octave (2,3,6,7). If we assume that either slope may be used for each of the four filters, then there are sixteen possibilities for a three-way filter. It is not always desirable to make the filters of a crossover-pair with the same slope - a so-called asymmetrical crossover may be needed when the response of one of the loudspeakers is not flat through the crossover point. Table 1 lists the possibilities.
The last four alternatives apply to two-way systems. We will refer in this article to the single crossover as \(f_1 \).

An electric wave-filter is characterised not only by the 'ultimate slope' of the roll-off curve, well into the 'stop-band' but also by the 'sharpness of transition' between the pass-band and the stop-band. A number of famous names are associated with a classification of filters into categories with increasing sharpness (once again: note the distinction between 'sharpness' and 'steepness'). Almost all loudspeaker crossover filters are of the Butterworth 'maximally flat amplitude' type. We will therefore illustrate the workings of the practical circuits by Butterworth responses. When the 'pass-band' is defined as the frequency range up to the \(-3\) dB point (low-pass) or from the \(-3\) dB point upwards (high-pass), then Butterworth gives the lowest possible 'pass-band attenuation' that can be obtained without allowing 'ripples'.

The figures 2, 3 and 4 give the design information for Butterworth low-pass filters (\(a \) figures) and Butterworth high-pass filters (\(b \) figures), for ultimate slopes of 18 dB/octave (figure 2), 12 dB/octave (figure 3) and 6 dB/octave (figure 4). The two sets of component numbers refer to the two different crossovers. We will come back to this when referring to the parts list. The active element in the circuits of figures 2, 3 and 4 is a voltage follower. The best known AC voltage follower is the so-called 'emitter follower'. Since a voltage gain of unity can only be closely approximated by an amplifier with extremely high current gain, the total circuit diagram of figure 5 shows 'super emitter followers' using two transistors each. The derivation of the component values always assumes the use of an ideal voltage follower; any attempt to 'make allowances' is fraught with great uncertainties – and the assumption that a one-transistor follower is ideal is just too optimistic! This is not the place to go into the
details of the derivation of design formulae.

One practical consequence of the derivations must however be noted here. That is the fact that it is not always possible to design filters in which all the frequency-determining R's and C's have convenient values. We have chosen circuits with either three equal C's (high-pass) or three equal R's (low-pass), the other components hopefully coming fairly close to standard E12 values. Filters with low Q values (such as Butterworth) will, fortunately, not immediately go haywire when some of the components are a few percent out. That is not to say that a fussy spot with access to 1% R's and C's should not indulge a craving for 'precision'.

So much for the general aspects of active crossover filter design. It is now time to try working out a specification. One way to tackle this problem is to use a check-list:

- Active filters only (figure 1c or 1d) or hybrid (1e)?
- Three-way or two-way?
- Which speakers?
- How steep the filters?
- Which amplifiers?

Do not try to find complete 'paper' answers to these questions. A great deal will depend on one's individual taste and on whatever happens to be available. Note that the idea was to find something to play with!

There is one fundamental guideline, however. Loudspeaker are meant to be used for listening to music, not the other way round. If it sounds right, then never mind what it looks like on paper. Assuming that one's musical taste is reasonable, any discrepancy between the theory and the actual result will usually be due to an oversight or incompleteness in the theory.

It will simplify this story if we introduce two further 'boundary conditions'. Let us assume that (1) we are going to do the job properly - no skimping on parts - and (2) that the reader already knows how to design his enclosure.

The question that should be tackled first is the choice of the loudspeaker to be used. This usually will involve a dig into the manufacturer's literature - or at least a good look into a distributor's catalogue. Unless one knows precisely what one wants, it is a good idea to select a combination recommended by the manufacturer, replacing only the inevitable passive filter by circuits covered in this article. Information on how to construct special woofer enclosures, such as folded horns or transmission line types, can often be found in the literature.

The basic choice between two-way and three-way systems is not inevitably one of cost, with three-way always better if you can afford it. On the contrary, some of the best-sounding systems around use a woofer-midrange unit plus a tweeter. These woofers-midrange units do however tend to need rather more than a simple closed-cabinet if they are to do a really good job at the deep bass end.

The frequencies and ultimate slopes of the crossover filters can be taken, at least as a starting point, from the parameters of the passive filter recommended by the speaker manufacturer. If one is combining speakers from various sources, then some experiment may be necessary (great fun!). There are one or two guidelines here, more 'don'ts' than 'do's'. In the first place, beware of the 'power handling capacity' ratings of tweeters. In the nature of things that their smaller coil systems cannot handle the massive amounts of input power that will not damage woofers. The temptation to supply is to quote a high power rating for a tweeter in combination with a specified high-pass filter. The 'power density' of normal music spectra certainly becomes significantly lower as the frequency increases; but this no longer applies when the amplifier is driven into distortion (accidentally or on purpose).
Table 1.
The different possible combinations of symmetrical or asymmetrical crossovers and 12 or 18 dB/octave slopes

<table>
<thead>
<tr>
<th>filters slopes at f_1 to be</th>
<th>filters slopes at f_2 to be</th>
<th>combine from figure 1</th>
<th>refer to figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 12</td>
<td>18 18</td>
<td>2, 4, 6 & 7</td>
<td>5 & 6*</td>
</tr>
<tr>
<td>18 12</td>
<td>12 12</td>
<td>2, 4, 5 & 8</td>
<td></td>
</tr>
<tr>
<td>18 12</td>
<td>18 12</td>
<td>2, 4, 6 & 7</td>
<td></td>
</tr>
<tr>
<td>18 12</td>
<td>18 12</td>
<td>2, 4, 5 & 7</td>
<td></td>
</tr>
<tr>
<td>12 18</td>
<td>18 18</td>
<td>1, 3, 6 & 7</td>
<td></td>
</tr>
<tr>
<td>12 18</td>
<td>12 12</td>
<td>1, 3, 6 & 8</td>
<td></td>
</tr>
<tr>
<td>12 18</td>
<td>12 12</td>
<td>1, 3, 6 & 7</td>
<td></td>
</tr>
<tr>
<td>12 12</td>
<td>18 18</td>
<td>1, 3, 6 & 7</td>
<td></td>
</tr>
<tr>
<td>12 18</td>
<td>12 18</td>
<td>1, 3, 6 & 7</td>
<td></td>
</tr>
<tr>
<td>12 18</td>
<td>12 12</td>
<td>1, 3, 6 & 7</td>
<td></td>
</tr>
<tr>
<td>12 12</td>
<td>18 18</td>
<td>2, 3, 6 & 7</td>
<td></td>
</tr>
<tr>
<td>12 12</td>
<td>12 12</td>
<td>2, 3, 6 & 8</td>
<td></td>
</tr>
<tr>
<td>12 12</td>
<td>12 12</td>
<td>2, 3, 5 & 7</td>
<td></td>
</tr>
<tr>
<td>12 12</td>
<td>12 12</td>
<td>1, 4, 6 & 7</td>
<td></td>
</tr>
<tr>
<td>12 12</td>
<td>12 12</td>
<td>1, 4, 5 & 8</td>
<td>7 & 8*</td>
</tr>
<tr>
<td>12 12</td>
<td>12 12</td>
<td>1, 4, 6 & 8</td>
<td></td>
</tr>
<tr>
<td>12 12</td>
<td>12 12</td>
<td>1, 4, 5 & 7</td>
<td></td>
</tr>
<tr>
<td>12 12</td>
<td>12 12</td>
<td>2, 3 & 3</td>
<td>9 & 10*</td>
</tr>
<tr>
<td>12 12</td>
<td>12 12</td>
<td>1 & 4</td>
<td>11 & 12*</td>
</tr>
<tr>
<td>12 12</td>
<td>12 12</td>
<td>1 & 3</td>
<td></td>
</tr>
<tr>
<td>18 12</td>
<td>18 12</td>
<td>2 & 4</td>
<td></td>
</tr>
</tbody>
</table>

* Note: figures 6 to 12 will be given in part 2.

Put another way: (1) the high-pass filter associated with a certain tweeter will invariably have a 'protection' function as well as its effect on the response and (2) don't try to get a quart out of a pint pot!
The other guideline worth mentioning concerns the fact that a given loudspeaker will invariably have a frequency response extending far higher than the recommended crossover low-pass cutoff. The response in the non-recommended range is, however, usually ragged or 'peaky' due to the cone (or other diaphragm) 'breaking up' into patterns of flexural resonances. This effect will impair the transient response. When a high-pass rolloff is recommended, quite apart from the input power consideration given above, there may be a mechanical limitation on the obtainable sound output in the non-recommended range. This would apply in particular to dome-type tweeters and squawkers.
The filter slope of 6 dB per octave is rarely used, although there is considerable evidence that a slow woofer-midrange rolloff combined with a steeper tweeter slope can give excellent results. It is included here for completeness sake, since 'asymmetrical' crossover filter design really requires access to acoustical measurement facilities.

The amplifiers
We come now to one of the great sources of endless discussion. How many watts need one provide for each loudspeaker? There are many ways of looking at this question, depending on the kind of music you have in mind for instance, or depending on which 'trade-off' you prefer.
We have already noted that the (continuous) dissipation of which a typical tweeter is capable will be less than that of, say, a mid-range and significantly less than that of a woofer. That is simply a question of the physical size of the respective "motors". It would seem obvious that the continuous-power ratings of the associated amplifiers should reflect this fact. All one can hope to achieve with some 'reserve watts' is an increased risk of sometime needing a 'reserve speaker'. There is a bit more to it than this: but let us break off at this point.
Every loudspeaker has a certain 'instantaneous' power rating, referring to how much driving force it will handle (quite apart from the dissipation involved) before some moving part hits an end-stop. Since, at a given sound level, the diaphragm amplitude will be greatest at low frequency, the actual useful instantaneous rating will depend on the choice of (high-pass) crossover frequency. This seems to indicate that the amplifier's "music power" rating, together with the choice of crossover frequency, should be matched to the (higher) instantaneous rating of the individual speaker. This applies literally to the midrange and to the tweeter; for the woofer something similar applies -- but now with the 'box' design setting the high-pass cutoff frequency.
Having taken a look at the limiting amounts of power that an amplifier should not be able to exceed, we still have no answer to the real question: how much do we need? The answer is, for normal domestic listening, 'surprisingly little'. Simply read off from the manufacturer's literature how much input will produce about 96 dB SPL ('sound pressure level') at 1 metre from the loudspeaker (usually specified for free-field-room measurement). It will usually prove that 10 or 20 watts already offers a very comfortable safety margin.

So much for the design considerations. Next month we will give circuits and printed circuit boards for 6-, 12- and 18 dB/octave filters for use in both 2- and 3-way systems.
Most T.V. games systems commercially produced allow the user to actually hear what is happening on the screen. When you shoot down a space invader, then an explosion or whatever is heard. It certainly adds to the overall enjoyment of the game. With the following circuit the Elektor T.V. games computer can now give you the extra audio effects needed to add that further touch of realism to a game.

The left-hand side of the circuit shows all the connections to be made to the main printed circuit board of the games computer. After the flip-flops contained in IC1 come the data-lines D2...D7. Data is switched from the input to the output on every negative going edge of the clock pulse. IC1 is enable when input B is addressed by line 1E80. The effects produced really depend on the rest of the programmed data in the computer. The basis of the sound generation is transistor T4, which is connected as a noise source. A1 and A2 amplify this signal up to a usable level, making it available at the output of A2.

A3 creates the explosion effect. With a logic 1 on the data line D4, A3 releases the noise signal suddenly! With a logic 0 on D4 the signal decays gradually with the speed of decay being determined by the rate C6 discharges across R17. A simple low-pass filter (R21, C7), feeds the signal to the programmable amplifier A4. The gain of A4 depends on the data present on lines D6...D7. The amplification changes in steps of 1x, 1.5x, 3x and 4x, the highest occuring when data 00 is present.

The audio output volume is controlled by P1. Finally an output power amplifier (IC3) completes the circuit. Points X and Y are connected to the outputs of the two programmable sound generators (PSGs) of the extended games computer. The PSGs together with this circuit should give you all the sound combinations ever needed. With a games computer which has not been extended and therefore does not have the two PSGs, either X or Y must be connected to pin 22 of the programmable video interface.

Table 1

0900	7628
0902	011EB0
0905	9A7B
0907	01FF
090C	CC1FC7
091D	0410
091E	CC1EB9
091F	12
0912	9A7D
0914	2B
0915	2B6F (1E80)
0917	09EA (1E80)
0919	1A7C
091B	C86D (1FCE7)
091D	1B63
The sound generator requires a voltage of 12 V. The computer itself cannot supply this. However, if the main computer power supply transformer has a 12 V tap, then a simple supply can be constructed using a diode and a 7812 regulator, as shown in figure 2. The unit consumes approximately 15 mA from the +5 V supply, whereas the +12 V supply must be capable of delivering about 150 mA, with the volume control fully up.

A change-over switch can be incorporated, to allow the effects to be bypassed if required. In this case each PSG output is connected to a 10 kΩ resistor. The two resistors are interconnected and fed to one side of the switch via a 100 nF capacitor. The details are shown in figure 2a.

Figure 2b shows the function of the different 'bits'. The table illustrates a demonstration program. Depressing 'WCAS' will produce the explosion effect. When the sound generator is switched off, depressing the same code will result in a loud hum being heard!

Parts list

Resistors
R1, R3, R7, R20, R21, R22, R29 = 10 kΩ
R2 = 1 kΩ
R10 = 1 MΩ
R11, R12 = 2 MΩ
R13 = 1 MΩ
R14 = 560 kΩ
R15 = 47 kΩ
R16 = 3 kΩ
R17 = 180 kΩ
R18, R19, R23 = 100 kΩ
R24 = 12 kΩ
R25, R26 = 39 kΩ
R27 = 96 kΩ
R28 = 18 kΩ
R30 = 10 kΩ
P1 = 10 kΩ log potentiometer

Capacitors
C1 = 270 pF
C2 = C5, C9, C13, C14 = 100 nF
C6 = 2μF/16 V
C7 = 96 nF
C8 = 220 nF
C10 = 10 μF/16 V
C11 = 47 nF
C12 = 470 μF/16 V

Semiconductors
D1, D8 = 1N4148
T1, T2, T4 = 8C547
T3 = 8C547 (part of games computer)
IC1 = 74LS378
IC2 = 324
IC3 = LM308

Miscellaneous:
LS = 8 Ohm, 0.5 W loudspeaker
Digital Timer

TEMPORA 4004 is a digital timer covering timing ranges from 9.999 seconds to 9999 minutes. It has an absolute accuracy of 0.01% and a repeat accuracy of 0.01%. It has a quartz crystal time base and is unaffected by variations in mains voltage and frequency. Tempora 4004 is available in the ranges 9.999, 99.99 seconds and 999.9, 9999 seconds or minutes. The required time is set on 4-digit thumbwheel switches. The elapsed time is displayed on a 4-digit, 7-segment red LED display.

The timing is initiated upon application of power to the instrument. After the set time is over, the relay output is operated, and the display remains static at the set value. The relay contact rating is 6 A/230 VAC, resistive. A pushbutton microswitch is provided for manual reset. This can be used to abort a timing cycle and start another. The timer is also available in 2-and 3-digit versions and can be configured for Delayed-On or Delayed-Off operation.

Tank Volume Computer

WAHL Instruments Inc. of USA have developed a 30 tank volume computer system for horizontal cylindrical or spherical tanks. The Wahl Data Force Computer Model DF 104-30C contains a complex non-linear equation which calculates in real-time the volume from a float height sensor to an accuracy of 0.1%. Thirty tanks are updated every second and the output along with alarms is available via an Rs-Z32C port for printers or video terminal display. Temperature and density correction can also be applied to each tank with readout in desired engineering units of gallons, pounds or cubic feet. All 30 tanks can be summed if desired. Applications include acid, solvent, chemical, wine, fuel oil, mix water, grain and liquified gas storage tanks or silos where the user needs a constant update on volume.

Digital Power Disturbance Recording Instruments.

The Premier Series 2000 digital recorders for power disturbance recordings have applications in power generating stations, large industrial undertakings, power distribution systems and load dispatch centres of State electricity boards. These recorders have a built-in quartz crystal controlled clock with display of parameters such as frequency, voltage, current, Mw or mVAr. The upper and lowest alarm limits are adjustable through thumbwheel switches. In the normal conditions, an 18 digit digital printer records time and parameter every 5 to 15 minutes in black colour ink. In case the parameter crosses the pre-adjusted upper or lower limits, the glowing lamp indicates the alarm conditions. The printer starts printing in red colour ink every 5 or 0.5 second. A memory feature further records 80 seconds pre-and post-disturbance readings. These recorders are available in table models with desk-top printer and in panel mount models with front printer.

M/S. Premier Electronics Pvt. Ltd. • Yogeshwar Math Marg • Tikait Rat Talab • Lucknow-226 004 • Tel: 83984
WE MAKE PERFORMANCE OP-AMPS AFFORDABLE

Whether it is Precision or speed you can count on the leader—Analog Devices Inc

For more details contact your nearest Analog Devices representative in India

ANALOG SALES (INDIA) Pvt. Ltd.
Pune (REGD OFF) 148/1-A Plot No 5 Krishna Aundh Pune 411 007 Ph 52050 TLX 145-4701
N OMR (BR OFF) C-197 Sarvodaya Enclave New Delhi 110 017 Ph 9462260 TLX 001-73225
Bangalore (BR OFF) 99/13th Main Rd Indiranagar, Bangalore 560039 Ph 988506 TLX 845-8904

PRECISION

The AD 707 features the best d.c. accuracy specification available in a non-chopper stabilized design. It features a maximum input offset voltage of 15 μV (C Grade). Input offset voltage drift of 0.1 μV/°C (C Grade)

The AD 548/648 features ultra low input bias current down to 10 pA.

The AD 707/548/648 are available in the plastic MINI-DIP, CERDIP & TO-99 metal can. The AD 707 is also available in an 8 pin plastic small outline (SO) package.

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>AD 548</th>
<th>AD 648</th>
<th>AD 646</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT BIAS CURRENT</td>
<td>25 μA</td>
<td>200 A</td>
<td>200 A</td>
</tr>
<tr>
<td>INPUT OFFSET VOLTAGE</td>
<td>50 μV</td>
<td>2 mV</td>
<td>2 mV</td>
</tr>
<tr>
<td>NOISE INPUT VOLTAGE</td>
<td>10 μV</td>
<td>20 μV</td>
<td>20 μV</td>
</tr>
<tr>
<td>NOISE INPUT CURRENT</td>
<td>0.5 nA</td>
<td>2 nA</td>
<td>3 nA</td>
</tr>
<tr>
<td>PRICE</td>
<td>$1.37</td>
<td>$0.82</td>
<td>$1.37</td>
</tr>
</tbody>
</table>

SPEED

The AD 744 is fast settling BIFET op-amp. It can settle to 0.01% (for 10V step) in 500 nsec (K Grade) and to 0.005% (for 10V step) in 1 μsec (K Grade). It also has a slew rate of 75 V/μsec.

The AD 711/712 combines Good speed and bias current specifications.

The AD 744/711/712 are available in the plastic MINI-DIP, CERDIP, and TO-99 metal can.

<table>
<thead>
<tr>
<th>FEATURES</th>
<th>AD 744</th>
<th>AD 711</th>
<th>AD 712</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT BIAS CURRENT</td>
<td>150 μA</td>
<td>500 A</td>
<td>75 PA</td>
</tr>
<tr>
<td>INPUT OFFSET VOLTAGE</td>
<td>1 mV</td>
<td>2 mV</td>
<td>3 mV</td>
</tr>
<tr>
<td>SETTLING TIME</td>
<td>0.5 μs</td>
<td>1 μs</td>
<td>2μs</td>
</tr>
<tr>
<td>TYPICAL Slew rate</td>
<td>75 V/μs</td>
<td>20 V/μs</td>
<td>20 V/μs</td>
</tr>
<tr>
<td>PRICE</td>
<td>$2.47</td>
<td>$0.88</td>
<td>$1.37</td>
</tr>
</tbody>
</table>